Analysis of balance is emerging as an important parameter in spinal deformity.
Introduction:
This paper aims to analyze the kinetics of the over-ground wheel-type body weight supporting system (BWS); tendency changes of low extremity joint moment (hip, knee, ankle), 3 axis accelerations of a trunk, cadence and gait velocity as weight bearing level changes. 15 subjects (11 males, 4 females, age:23.63.5, height:170.65.1cm, weight:69.0210.75kg) who had no history of surgery participated. 6 levels (0%, 10%, 20%, 30%, 40% and 50%) of BWS were given to subjects at self-selected gait velocity and kinetic data was calculated using a motion capture system, Vicon® (Vicon, UK).Objective
Method
The rehabilitative phase of ankle injury management often involves the use of an ankle brace. The aim of this study was to ascertain the effects of such braces on the forces through the foot and the timing of peak loads in the gait cycle, in the recovering ankle and the uninjured ankle, in order to understand better the mechanism by which such braces enhance ankle stability. Twenty four adults with recurrent ankle injuries and an aspiration to return to sporting activity were studied. Each was in the rehabilitation phase of recovery from ankle injury. Controls were 17 adults who regularly took part in sporting activity, without ankle injury. Assessment of peak force in three orthogonal axes (% body weight) during walking was carried out using the Kistler foot plate; the times taken to reach the maxima were recorded. Subjects were assessed in bare feet, training shoes and wearing one of two types of commonly available stirrup-type ankle braces. Results showed that the ankle braces did not alter peak loads compared to training shoes alone (one-way analysis of variance, p<
0.05) and were consistent in both the injured and un-injured subjects. There were no significant differences between the two braces tested (p<
0.05). The time to reach peak load was not significantly different between the braced or non-braced ankles in either the injured or control groups. Conclusions are that stirrup type ankle braces do not alter the peak forces through the foot during walking. The effectiveness of stirrup-type ankle braces appears not to depend on their modification of medial forces during gait.
The rehabilitative phase of ankle injury management often involves braces. Our aim was to ascertain the effect of both a brace on both ankle range of movement and the timing of peak loads in the gait cycle, to understand better the mechanisms by which such braces enhance ankle stability. We recruited 24 adults who were in the rehabilitation stage following ankle injuries, and in whom there was an aspiration to return to sport. Controls were 17 adults who regularly played sport, but had no recent history of injury. Assessment of range of movement was carried out using the Biodex isokinetic dynamometer to measure inversion, eversion, flexion and extension of the foot, with the subject in training shoes, and wearing one of two common stirrup-type ankle braces. Assessment of peak force in three orthogonal axes (% body weight) was performed using the Kistler footplate. The subjects were observed in bare feet, trainers and stirrup braces. Results showed that the ankle braces restricted inversion (mean reduction 9 degrees, SD 8 degrees) compared to training shoes alone in both the injured and non-injured sunjects, but the restriction in range of movement in inversion /eversion was not significantly different between the braced injured and un-injured ankles (t test p<
0.05).The ankle braces did not alter peak loads compared to training shoes alone (one way analysis of variance, p<
0.05);these findings were consistent in both groups. The time to reach peak load was not significantly different between the braced or un-braced ankles in either the injured or control groups. We conclude that stirrup type braces reduce the range of inversion/eversion in the normal and injured ankle, reducing the movement by a similar amount in both of these groups, but they do not alter peak forces through the foot during walking.
Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Methods. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction
Hop tests are used to determine return to sports after ACL reconstruction. They mostly measure distance and symmetry but do not assess kinematics and kinetics. Recently, biomechanical evaluations have been incorporated into these functional jump tests for the better assessment of return to sport. We assessed the sagittal plane range of motion (ROM) of the knee, the deviation axis of rotation (DAOR), and the vertical ground reaction force (vGRF) normalized to body weight in nine healthy participants during the single leg (SLH) and crossover hop tests (COHT). Participants' leg lengths were measured. Jumping distances were marked in the test area as being 4/5 of the leg length. Four sensors were placed on the thighs, the legs and the feet. These body parts were handled as a single rigid body. Eight 480 Hz cameras were used to capture the movements of these rigid bodies. vGRF at landing were measured using a
To investigate differences in the drop vertical jump height in female adolescents with an ACL injury and healthy controls and the contribution of each limb in this task.
Forty female adolescents with an ACL injury (ACLi, 15.2 ± 1.4 yrs, 164.6 ± 6.0 cm, 63.1 ± 10.0 kg) and thirty-nine uninjured (CON, 13.2 ± 1.7 yrs, 161.7 ± 8.0 cm, 50.6 ± 11.0 kg) were included in this study. A 10-camera infrared motion analysis system (Vicon, Nexus, Oxford, UK) tracked pelvis, thigh, shank, and foot kinematics at 200Hz, while the participants performed 3 trials of double-legged drop vertical jumps (DVJ) on two
Introduction. Weight is a modifiable risk factor for osteoarthritis (OA) progression. Despite the emphasis on weight loss, data quantifying the changes seen in joint biomechanics are limited. Bariatric surgery patients experience rapid weight loss. This provides a suitable population to study changes in joint forces and function as weight changes. Method. 10 female patients undergoing gastric bypass or sleeve gastrectomy completed 3D walking gait analysis at a self-selected pace, pre- and 6 months post-surgery. Lower limb and torso kinematic data for 10 walking trials were collected using a Vicon motion capture system and kinetics using a Kistler
Ankle fusion (AF), a durable intervention for ankle arthritis, has been the management of choice but restricts mobility. Recently, total ankle replacement (TAR) has been offered to patients looking to maintain mobility. The aim was to compare the biomechanics of AF and TAR while walking on inverted and everted slopes which create a greater demand for complex foot mobility than level walking. A ten-camera motion detection setup captured trials as patients walked in both directions over a 5⁰ lateral slope with embedded
It has been recently being investigated how the pressure distribution beneath the foot points to the active usage of the foot in standing adults. Nevertheless, it offers new perspectives in postural research by introducing foot-triggered sensory-motor control strategies in quiet standing dynamics. Furthermore, the spatiotemporal evolution of physiological postural control strategies has not clearly been identified yet. Thus, we have chosen developmental aspects of the infant's postural adjustments as a media to explore learning of biped standing. This study investigates developmental changes in active usage of a contact surface and pressure distribution beneath infants’ foot during learning of upright posture. We started studying longitudinally on 22 female and 22 male infants at their 12.5. th. months (1. st. trimester, T1) and kept on screening the same subjects at every three months (19 females and 12 males at 15.5. th. months (T2), 17 females and 7 males at 18.4. th. months (T3)), during their normal checkup appointments in Gazi University Hospital, Social Pediatrics Department-Ankara/Turkey. Each trial was fulfilled by an infant standing on a pressure pad placed on top of a
Aims. To evaluate graft healing of decellularized porcine superflexor tendon (pSFT) xenograft in an ovine anterior cruciate ligament (ACL) reconstruction model using two femoral fixation devices. Also, to determine if pSFT allows functional recovery of gait as compared with the preoperative measurements. Methods. A total of 12 sheep underwent unilateral single-bundle ACL reconstruction using pSFT. Two femoral fixation devices were investigated: Group 1 (n = 6) used cortical suspensory fixation (Endobutton CL) and Group 2 (n = 6) used cross-pin fixation (Stratis ST). A soft screw was used for tibial fixation. Functional recovery was quantified using
Introduction. One of the known mechanisms which could contribute to the failure of total hip replacements (THR) is edge contact. Failures associated with edge contact include rim damage and lysis due to altered loading and torques. Recent study on four THR patients showed that the inclusion of pelvic motions in a contact model increased the risk of edge contact in some patients. The aim of current study was to determine whether pelvic motions have the same effect on contact location for a larger patient cohort and determine the contribution of each of the pelvic rotations to this effect. Methods. Gait data was acquired from five male and five female unilateral THR patients using a ten camera Vicon system (Oxford Metrics, UK) interfaced with twin
Force profiles across the foot yield information on abnormal kinematics and may be used to indicate pathological changes in the lower limb. However, current technology is limited to tethered systems using wired sensors. This paper outlines a wireless prototype that allows force profile measurement and through an in-shoe monitoring device utilizing custom high-accuracy sensors. Direct measurement of the ground reaction force using a
Introduction. Total Hip Arthroplasty (THA) devices are now increasingly subjected to a progressively greater range of kinematic and loading regimes from substantially younger and more active patients. In the interest of ensuring adequate THA solutions for all patient groups, THA polyethylene acetabular liner (PE Liner) wear representative of younger, heavier, and more active patients (referred to as HA in this study) warrants further understanding. Previous studies have investigated HA joint related morbidity [1]. Current or past rugby players are more likely to report osteoarthritis, osteoporosis, and joint replacement than a general population. This investigation aimed to provide a preliminary understanding of HA patient specific PE liner tribological performance during Standard Walking (SW) gait in comparison to IS0:14242-1:2014 standardized testing. Materials and Methods. Nine healthy male subjects volunteered for a gait lab-based study to collect kinematics and loading profiles. Owing to limitations in subject selection, five subjects wore a weighted jacket to increase Body Mass Index ≥30 (BMI). An induced increase in Bodyweight was capped (<30%BW) to avoid significantly effecting gait [3] (mean=11%BW). Six subjects identified as HA per BMI≥30, but with anthropometric ratios indicative of lower body fat as previously detailed by the author [2] (Waist-to-hip circumference ratio and waist circumference-to-height ratio). Three subjects identified as Normal (BMI<25). Instrumented
Introduction. Early hip OA may be attributed to smaller coverage of the femoral head leading to higher loads per unit area. We hypothesize that tight hamstrings may contribute to increased loads per unit area on the femoral head during gait. When a patient has tight hamstrings they cannot flex their pelvis in a normal fashion which may result in smaller coverage of the femoral head (Figure 1). This study aimed to determine if subjects with tight hamstrings can improve femoral head coverage during gait after a stretching intervention. Methods. Nine healthy subjects with tight hamstrings (popliteal angle>25°) were recruited and consented for this IRB approved study. Gait analysis with 58 reflective markers were placed by palpation on anatomical landmarks of the torso and lower extremities. Ten optoelectronic cameras (Qualisys, Gothenburg, Sweden) and three
Differences at motor control strategies to provide dynamic balance in various tasks in diabetic polyneuropatic (DPN) patients due to losing the lower extremity somatosensory information were reported in the literature. It has been stated that dynamics of center of mass (CoM) is controlled by center of pressure (CoP) during human upright standing and active daily movements. Indeed analyzing kinematic trajectories of joints unveil motor control strategies stabilizing CoM. Nevertheless, we hypothesized that imbalance disorders/CoM destabilization observed at DPN patients due to lack of tactile information about the base of support cannot be explained only by looking at joint kinematics, rather functional foot usage is proposed to be an important counterpart at controlling CoM. In this study, we included 14 DPN patients, who are diagnosed through clinical examination and electroneuromyography, and age matched 14 healthy subjects (HS) to identify control strategies in functional reach test (FRT). After measuring participants’ foot arch index (FAI) by a custom-made archmeter, they were tested by using a
Introduction. Golf is a recommended form of physical activity for older adults. However, clinicians have no evidence-based research regarding the demands on the hips of older adults during golf. The purpose of our in vivoobservational study was to quantify the hip biomechanics of older adult golfers. Methods. Seventeen healthy older male golfers(62.2±8.8 years, handicap 8.7±4.9) free from orthopaedic injuries and surgeries volunteered for participation in this IRB-approved study. A 10-camera motion capture system recorded kinematics, and two
Background. Subjects with Low Back Pain (LBP) often have altered trunk muscle activity and postural sway during perturbations. Research suggests different perturbations have differing results on abdominal muscle activity and postural sway, however, the majority of perturbations investigated are not realistic daily tasks and little evidence exists if the changes are still present following resolution of symptoms. Aim: to determine trunk muscle activity, Lumbar multifidus (M), iliocostalis lumborum (IL), external oblique (EO), transversus abdominus/internal oblique TrA/IO and postural sway during two reaching tasks between subjects with history of LBP (HLBP) and those without. Method. 20 volunteers, 8 HLBP (22±2yrs, 174.9±6.0cm, 68.3±6.22kgs,) and 12 without HLBP (20.58±2.23 yrs, 174.5±9.8cm, 68.6±13.9kgs) gave informed consent. Surface Electromyography (sEMG) measured muscle activity of M, IL, TrA/IO, EO and VICON
Clinical management of ankle injuries often involves use of braces to provide pain relief and stability. Individuals with braced ankles may be at more risk of injury while turning. The aim of this study was to evaluate the biomechanical effects of one of the commonly prescribed pneumatic ankle braces on gait parameters while turning. Three-dimensional gait data was collected using a 7 camera, VICON 612 (Oxford Metric, UK) motion analysis system (120 HZ) synchronised with a single Kistler