Aims. Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. Methods. A retrospective study involving 24 patients (37 hips) with FAI and
Aims. The frequency of severe
Introduction: Femoroacetabular impingement (FAI) is one of the main causes of hip osteoarthritis.
Aims. To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. Methods. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with
Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters. We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.Aims
Methods
Introduction. The posterior condylar axis of the knee is the most common reference for femoral anteversion. However, the posterior condyles, nor the transepicondylar axis, provide a functional description of femoral anteversion, and their appropriateness as the ideal reference has been questioned. In a natural standing positon, the femur can be internally or externally rotated, altering the functional anteversion of the native femoral neck or prosthetic stem. Uemura et al. found that the femur internally rotates by 0.4° as femoral anteversion increases every 1°. The aim of this study was to assess the relationship between femoral anteversion and the axial rotation of the femur before and after total hip replacement (THR). Method. Fifty-nine patients had a pre-operative CT scan as part of their routine planning for THR. The patients were asked to lie in a comfortable position in the CT scanner. The internal/external rotation of the femur, described as the angle between the posterior condyles and the CT coronal plane, was measured. The native femoral neck anteversion, relative to the posterior condyles, was also determined. Identical measurements were performed at one-week post-op using the same CT methodology. The relationship between femoral IR/ER and femoral anteversion was studied pre- and post-op. Additionally, the effect of changing anteversion on the axial rotation of the femur was investigated. Results. There was a strong correlation between axial rotation of the femur and femoral anteversion, both pre-and post-operatively. Pearson correlation coefficients of 0.64 and 0.66 respectively. This supported Uemura et al.'s findings that internal rotation of the femur increases with increasing anteversion. Additionally, there was a moderate correlation, r = 0.56, between the change in axial rotation of the femur and change in anteversion. This trend suggested that external rotation of the leg would increase, if stem anteversion was decreased from the native. Conclusions. Patients with high femoral anteversion may have a natural mechanism of “correction” with femoral internal rotation. Equally, patients with
Introduction. Version abnormalities of the femur, either retroversion or excessive anteversion, cause pain and hip joint damage due to impingement or instability respectively. A retrospective clinical review was conducted on patients undergoing a subtrochanteric derotation osteotomy for either excessive anteversion or retroversion of the femur. Methods. A total of 49 derotation osteotomies were performed in 39 patients. There were 32 females and 7 males. Average age was 29 years (range 14 to 59 years). Osteotomies were performed closed with an intramedullary saw (Figure 1). Fixation was performed with a variety of intramedullary nails. Patients requiring a varus or valgus intertrochanteric osteotomy were excluded. Pure rotational corrections only were performed. Twenty-four percent of patients had a retroversion deformity (average −8° retroversion, range +1 to −23°), 76% had excessive anteversion of the femur (average +36° anteversion, range +22° to +53°). Etiology was post-traumatic in 5 (10%), diplegic cerebral palsy in 4 (8%), fibrous dysplasia in 2 (4%), Prader-Willi Syndrome in 1 (2%) and idiopathic in 37 (76%). Previous surgery had been performed in 51% of hips. Fifty-seven percent underwent concomitant surgery with the index femoral derotation osteotomy, including hip arthroscopy in 39% (labral debridement alone or with femoral neck osteochondroplasty), a tibial derotation osteotomy in 12% and periacetabular osteotomy in 6%. Concomitant tibial osteotomies were performed to correct a compensatory excessive external tibial torsion that would be exacerbated in the correction of excessive femoral anteversion. The modified Harris Hip Score was used to assess the results in patients with a minimum of 24 months follow-up. Results. There were no non-unions. Average time to union was 3.3 months. One late infection occurred 10 months after surgery, treated successfully with hardware removal and antibiotics. Two patients, one with Prader-Willi syndrome and one with Ehlers-Danlos syndrome, were converted to total hip replacement. At an average follow-up of 6.1 years (range 2 to 19.1 years), the modified Harris Hip Score improved by 26 points (p< 0.001, Wilcoxon signed-ranks test). The results were rated as excellent in 71%, good in 22%, fair in 5% and poor in 3%. Subsequent surgery was required in 73%, 93% of which were hardware removals. Discussion and Conclusion. A closed, subtrochanteric derotation osteotomy of the femur is a safe and effective procedure to treat either
Introduction: Obligatory external rotation during flexion is well recognised as a cardinal feature of Slipped Upper Femoral Epiphyses (SUFE). We have evaluated the significance of acetabular version in contributing to the external rotational deformity that is seen in otherwise normal hips. We present a small case series focussing on the characteristics of this pathology, highlighting its significance and outlining a treatment strategy. Method: Five patients (eight hips) presented with disabling hip pain during non-sporting activities. All their hip radiographs had been reported as normal. The rotational profile of both acetabulum and femur in these patients was evaluated by MRI and CT scans. Results: Clinical examination revealed otherwise normal hips but for an external rotation deformity which got worse on hip flexion. The average external rotation deformity with the hip in extension was 60 degrees, which worsened to 90 degrees during hip flexion. Three of these hips had been previously treated with in situ pinning for SUFE. Other hips were in patients who were either skeletally mature or close to skeletal maturity. We found that all were “profunda hips” with severe acetabular retroversion. The abnormality in acetabular version was best defined on axial imaging. Conclusions: The femoral head is a spherical conchoid. The concept of version of the hip (both femoral and acetabular) as described by McKibbin, Tonnis and Ganz is reviewed.
Slipped upper femoral epiphysis (SUFE) has well documented biochemical and mechanical risk factors. Femoral and acetabular morphologies seem to be equally important. Acetabular retroversion has a low prevalence in asymptomatic adults. Hips with dysplasia, osteoarthritis, and Perthes’ disease, however, have higher rates, ranging from 18% to 48%. The aim of our study was to assess the prevalence of acetabular retroversion in patients presenting with SUFE using both validated radiological signs and tomographical measurements. A retrospective review of all SUFE surgical cases presenting to the Royal Children’s Hospital, Melbourne, Australia, from 2012 to 2019 were evaluated. Preoperative plain radiographs were assessed for slip angle, validated radiological signs of retroversion, and standardized postoperative CT scans were used to assess cranial and mid-acetabular version.Aims
Methods
The June 2015 Hip &
Pelvis Roundup360 looks at: neuraxial anaesthesia and large joint arthroplasty; revision total hip arthoplasty: factors associated with re-revision surgery; acetabular version and clinical outcomes in impingement surgery; hip precautions may be ineffective; implant selection and cost effectiveness; femoroacetabular impingement in the older age group; multiple revision in hip arthroplasty
Femoroacetabular impingement (FAI) causes pain
and chondrolabral damage via mechanical overload during movement
of the hip. It is caused by many different types of pathoanatomy,
including the cam ‘bump’, decreased head–neck offset, acetabular
retroversion, global acetabular overcoverage, prominent anterior–inferior
iliac spine, slipped capital femoral epiphysis, and the sequelae
of childhood Perthes’ disease. Both evolutionary and developmental factors may cause FAI. Prevalence
studies show that anatomic variations that cause FAI are common
in the asymptomatic population. Young athletes may be predisposed
to FAI because of the stress on the physis during development. Other
factors, including the soft tissues, may also influence symptoms and
chondrolabral damage. FAI and the resultant chondrolabral pathology are often treated
arthroscopically. Although the results are favourable, morphologies
can be complex, patient expectations are high and the surgery is
challenging. The long-term outcomes of hip arthroscopy are still
forthcoming and it is unknown if treatment of FAI will prevent arthrosis.