Aims. The conventionally described mechanism of distal biceps tendon rupture (DBTR) is of a ‘considerable extension force suddenly applied to a resisting, actively flexed forearm’. This has been commonly paraphrased as an ‘eccentric contracture to a flexed elbow’. Both definitions have been frequently used in the literature with little objective analysis or citation. The aim of the present study was to use video footage of real time distal biceps ruptures to revisit and objectively define the mechanism of injury. Methods. An online search identified 61 videos reporting a DBTR. Videos were independently reviewed by three surgeons to assess forearm rotation, elbow flexion, shoulder position, and type of muscle contraction being exerted at the time of rupture. Prospective data on mechanism of injury and arm position was also collected concurrently for 22 consecutive patients diagnosed with an acute DBTR in order to corroborate the video analysis. Results. Four videos were excluded, leaving 57 for final analysis. Mechanisms of injury included deadlift, bicep curls, calisthenics, arm wrestling, heavy lifting, and boxing. In all, 98% of ruptures occurred with the arm in supination and 89% occurred at 0° to 10° of elbow flexion. Regarding muscle activity, 88% occurred during isometric contraction, 7% during
The objectives of this study were to elucidate the function of Brachioradialis during forearm rotation to determine whether it is a neutralizing muscle and a protector of hyper-rotation by
Pectoralis major tendon rupture is a relatively rare injury, resulting from violent,
Introduction and Aims: Pectoralis major tendon rupture is a relatively rare injury, resulting from violent,
The early diagnosis of the suprascapular nerve (SSN) entrapment in overhead athletes with simultaneous shoulder injuries and its arthroscopic release plays an important role for their appropriate treatment and recovery. SSN release at suprascapular and spinoglenoid notches, seems very helpful for increasing their performance. 21 Elite overhead athletes were treated from Jan 2005–May 2009. From 16 to 34 years old, mean 26 years, 4 Javelin throwers (Olympic and National level thrower), 4 Weightlifters (International level), 8 Volleyball Players, 3 Kick Boxer, 2 Water Polo Players. Extreme ROM of arm creates large torques about the shoulder cycle of repetitive microtrauma to the SSN, Direct trauma: fracture, dislocation, blunt trauma traction injury, Sling effect with hyper-abduction injury at the SS Notch, Correlation ROM with SSN entrapment in volley ball players,
We have developed a novel knee simulator that reproduces the active knee motion to evaluate kinematics and joint reaction forces of TKA. There have been developed many kinds of knee simulators; Most of them are to predict TKA component wear and the others are to evaluate the kinematics and/or kinetics of TKA. The most simulators have been operated using the data of the loading and kinematics profile of the knee obtained from normal gait. Here a problem is that such variables as joint force and kinematics are the outcome caused by the application of muscles' and external forces. If so, a simulator should be operated by the muscles' and external forces so as to duplicate the in vivo condition. Other disadvantages for the current knee simulators are; a knee joint motion is made passively, the effects of the hip joint motion are not taken into account, and the maximum flexion angle is usually limited at about 100°. Considering the above, we have developed a knee simulator with the following advantages and innovative features. First, the simulator is driven by the muscles' forces and an active knee motion is made with bearing the upper body weight. As a result, the knee shows a 3D kinematics and generates the tibio-femoral contact forces. Under this condition, the TKA performance is to be assessed. Secondly, a hip joint mechanism is also incorporated into the simulator. The lower limb motion is achieved by the synergistic function between the hip and knee joints. Under this condition, a natural knee motion is to be reproduced. Thirdly, the simulator can make complete deep knee flexion up to 180°. Thus not only the conventional TKA but also a new TKA for high flexion can be attached to it for the evaluation. Figure 1 shows the structure of the simulator, in which both the hip and knee joints are moved in a synergistic fashion by the pull forces of four wires. The four wires are pulled by the four servomotors respectively and reproduce the functions of the mono-articular muscles ((1), (3)) and the bi-articular muscles ((2), (4)) through the multiple pulley system. It should be noted that weight A and B are not heavy enough for the inverted double pendulum to stand up straight. They are applied as counter weights so that each segment duplicate the each segmental weight of the human lower limb. Figure 2 shows a sequential representation of stand to sit features: (a) at standing, (b) at high flexion, and (c) at deep flexion. At a state of 130° knee flexion between (b) and (c), hamstrings wire (4) becomes shortest and then exhibits an
This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation. A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups.Aims
Methods
The purpose of this study was to investigate the mechanism of injury causing anterior cruciate ligament ruptures in snowboarders and skateboarders. Knee injuries in snowboarding and skateboarding are rare. We have seen 22 ACL ruptures with an identical injury mechanism that has not been previously described. Fifteen ACL ruptures occurred in snow-boarders and 7 in skateboarders. All were advanced or expert boarders. All injuries occurred on landing a high jump, which resulted in significant knee compression. All described a flat landing on a flexed knee with no twisting component. We postulate that anterior cruciate ligament rupture in these patients is due to explosive
Tendinopathy is a debilitating musculoskeletal
condition which can cause significant pain and lead to complete rupture
of the tendon, which often requires surgical repair. Due in part
to the large spectrum of tendon pathologies, these disorders continue
to be a clinical challenge. Animal models are often used in this
field of research as they offer an attractive framework to examine
the cascade of processes that occur throughout both tendon pathology and
repair. This review discusses the structural, mechanical, and biological
changes that occur throughout tendon pathology in animal models,
as well as strategies for the improvement of tendon healing. Cite this article: