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Aims
This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients
with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT),
which may offer opportunities for clinician intervention in treatment and rehabilitation.

Methods
A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy
subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was
applied to ground reaction forces and marker trajectories using the AnyBody Modeling
System. One-dimensional statistical parametric mapping was performed to compare ankle
joint reaction force and joint moment curve among groups.

Results
The patients with OLT showed significantly increased dorsiflexion moment in the ankle joint
compared with healthy subjects during 38.2% to 40.9% of the gait cycle, and increased
eversion moment in the ankle joint compared with patients without OLT during 25.5% to
27.6% of the gait cycle. Compared with healthy subjects, the patients with OLT showed
increased anterior force during 42% to 43% of the gait cycle, and maximal medial force (p =
0.005, ηp2 = 0.399).

Conclusion
The patients with concomitant CAI and OLT exhibit increased dorsiflexion and eversion
moment, as well as increased anterior and medial ankle joint reaction force during stair
descent, compared with patients with CAI but without OLT and healthy subjects, respec-
tively. Thus, a rehabilitative regimen targeting excessive ankle dorsiflexion and eversion
moment may help to reduce ankle joint loading.
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patients with CAI but without OLT and healthy subjects.
• Joint mobilization targeting range of motion restriction and

eccentric/concentric training targeting neuromuscular
change of invertors and evertors may help to reduce ankle
joint loading.

Strengths and limitations
• The current study adds evidence for the simultaneous

appearance of kinetic alterations and OLT in the ankle joint
of some patients with CAI.

• As a limitation, in vivo ankle kinetics from a pressure sensor
were not acquired for the validation of this method.

Introduction
After an initial ankle sprain, mechanical and functional
impairments contribute to symptoms such as pain, swelling,
recurrent ankle sprain, giving way, and feeling of instability,
collectively known as chronic ankle instability (CAI).1 About
one-third of patients with CAI have concomitant osteochon-
dral lesion of the talus (OLT).2 Concomitant OLT predisposes
patients with CAI to inferior clinical outcomes, and remains
a challenge in treating these patients.3-6 Although several
studies have focused on the biomechanics of patients with
CAI, little is known about the biomechanics of patients with
concomitant OLT and CAI.2,7 The recommendations for the
inclusion of patients with CAI failed to distinguish patients
with CAI and OLT from those with CAI but without OLT, which
is likely one of the reasons why studies on the biomechanics of
patients with CAI contradict one another.8,9

Patients with CAI show increased plantarflexion,
internal rotation, and inversion in the ankle joint complex
during walking, running, and other functional tasks.7,10 Kinetic
studies have shown that patients with CAI have delayed
muscle response, which results in moment change in frontal
and sagittal planes.7 Modelling and simulation reveal the
migration of peak stress toward the medial and anterior side
of the talus and shear force toward the same directions.11,12 In
our previous study on the biomechanics of patients with CAI
and OLT, we utilized skin-marker based motion capture and
wireless electromyographic system, and indicated that these
subjects have decreased maximal plantar flexion and internal
rotation angle, accompanied by decreased peroneal activation
in 0% to 6% of the stance phase during stair descent.13 These
variables can be utilized to monitor the function of patients
with CAI and their possibility of developing OLT.

However, the OLT development is closely related to
kinetic change (joint reaction force and moments) of ankle
joint, which is not discussed in our previous study. Whether
long-term biomechanical maladaptation plays an important
role in the developing pathology of OLT remains unknown.9

The rate of concomitant OLT presence in patients with acute
ankle fracture could be as high as 60% at the time of initial
trauma.14 However, an arthroscopic evaluation of patients with
ankle fracture history shows that the rate of concomitant
OLT presence is lower at 30% after 34 months post-injury.15

Patients with ankle fracture history may restore ankle stability
through bony stability, and a biomechanically stable ankle
allows healing of OLT to occur. The rate of concomitant OLT
presence may be reduced in long-term follow-up post-injury,
which may be one of the reasons for the disagreement in

OLT rate among studies. Healing occurs in patients with OLT
under stable biomechanical conditions.16 However, a post-
injury duration of an initial ankle sprain of five years or longer
is significantly associated with the presence of OLT in patients
with CAI, indicating that ankle biomechanical alterations may
serve as long-term effects in the development of OLT.17 The
current study aimed to use musculoskeletal modelling for
investigating the in vivo ankle kinetic alterations that may
perpetuate or develop OLT in patients with concomitant CAI
and OLT, during a dynamic stair descent scenario, and to
find biomechanical targets for rehabilitation interventions.
We hypothesized that the presence of OLT and increase in
ankle joint loading or alteration in the direction of shear force
coexist in patients with CAI.

Methods
This study was approved by the Institutional Review Board of
Huashan Hospital, Fudan University. Participants and settings
of motion capture analysis were as described by Cao et al.13,18,19

A priori power analysis was done, and a sample size of eight
for each group was required to detect a group difference of
2° in the ankle joint, at the level of significance of 0.05, and
the test power of 0.8.19 A total of 25 individuals with CAI
willing to participate in the current study underwent surgery
in our institution from June 2019 to January 2020, and were
screened for eligibility by two senior orthopaedic surgeons
(XW, XM). Overall, 16 of them were eventually included in the
current study based on the inclusion and exclusion criteria
adapted from the recommendations of the International Ankle
Consortium.8 Patients with CAI were categorized into patients
without OLT (four males and four females, with a mean age
of 40.8 years (SD 12.0), a mean height of 167.3 cm (SD
8.8), a mean Beighton Score of 2.3 (SD 1.5), and a mean
weight of 66.3 kg (SD 9.9)) and patients with concomitant
OLT (four males and four females, with a mean age of 37.9
years (SD 8.5), a mean height of 169.6 cm (SD 6.8), a mean
Beighton Score of 1.6 (SD 1.4), and a mean weight of 68.8
kg (SD 11.1)) based on MRI and subsequent arthroscopic
evaluation (Figure 1). The criteria for OLT are based on MRI
(as T2 high-signal in the cartilage or subchondral bone of the
talus). One patient had OLT in zone 6, and seven patients
had OLT in zone 4 in accordance with the anatomical grid
scheme.13 The Pritsch Grade system modified by Takao et al20

of each patient with CAI and OLT was determined in subse-
quent arthroscopic evaluation. Two patients with OLT were
grade I, two were grade II, three were grade III, and one was
grade IV. Patients with OLT with a diameter of over 15 mm
were excluded to ensure consistency inside this group. All
included patients were treated with an arthroscopic modified
Broström procedure, and those with OLT were treated with a
microfracture procedure. Preoperative biomechanical analysis
was performed for each patient. Eight healthy subjects (four
males and four females, with a mean age of 37.6 years (SD
8.1), a mean height of 170.4 (SD 8.4), and a mean weight of
63.5 kg (SD 8.9) comprised volunteers without musculoskeletal
disorders, and they were recruited via posters to match the
patient group with regard to age, height, and weight.

All subjects completed six satisfactory three-step stair
descent trials, and three randomly selected trials were used for
analysis. In addition, the mean values of these three trials were
calculated. A total of 26 10 mm reflective markers were placed
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on the anatomical landmarks of each participant in accord-
ance with the Helen–Hayes model.21 During stair descent,
trajectories of skin markers were sampled at 60 Hz using a
motion capture system (Cortex-64; Motion Analysis, USA), and

the ground reaction force was recorded using force plates
(OR6-7; Advanced Mechanical Technology, Inc., USA). Ankle
kinetics and ground reaction force were the basis for
numerical simulations performed in AnyBody Modeling

Fig. 1
Patient with chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT) included in the current study based on MRI and subsequent
arthroscopic evaluation. a) Coronal MRI image showing OLT on the medial shoulder of the talus. Red arrow: OLT. b) Sagittal MRI image showing OLT
on the talus. Red arrow: OLT. c) Transverse MRI image showing anterior talofibular ligament thickening and slacking. Red arrow: anterior talofibular
ligament. d) Arthroscopic assessment showing scar tissue on the anterior talofibular ligament fibre. Red arrow: anterior talofibular ligament. e)
Arthroscopic assessment showing OLT on the medial shoulder of the talus. Red arrow: OLT.

Fig. 2
Prominent similarity found in the contradistinction between electromyography (EMG) results and AnyBody results in the same experiment, which
validates the modelling method. a) EMG results of peroneus longus in contradistinction to AnyBody results. b) EMG results of anterior tibialis in
contradistinction to AnyBody results. (c) EMG results of gastrocnemius in contradistinction to AnyBody results.
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System v.7.3 (AnyBody Technology, Denmark).22 Surface
electromyography signals of the peroneal longus, anterior
tibialis, and medial gastrocnemius were sampled at 2,000 Hz
by using a wireless electromyography system (m320RX; Myon,
Switzerland) based on the SENIAM guidelines.23 The electro-
myography value was used to validate the calculated muscle
force results of the AnyBody Modeling System.

The motion capture model taken from a reposi-
tory (AnyBody Managed Model Repository v2.3; AnyBody
Technology, Denmark) was applied for gait analysis. The model
of the lower part of the human body consisted of 17 rigid
body segments, connected by 16 joints with 32° of freedom.
The model of each lower limb comprised 55 muscles divided
into 169 branches modelled using the simple-type model. The
generic standard model was scaled in accordance with the
length-mass-fat scaling law using the anthropometric data
and the recorded position of markers for each participant.
Models prepared for particular participants, together with
ground reaction forces and marker trajectories, were imported

into AnyBody, and such models served as the basis for inverse
dynamic analysis to calculate external joint moments (ankle
plantarflexion/dorsiflexion (+) moment, inversion (+)/eversion
moment, and external (+)/internal rotational moment).24

The muscle force was distributed using the second-order
polynomial muscle recruitment criterion. Finally, the ankle
joint reaction force was obtained as a result of muscle forces
and the forces of gravity and inertia, and it was further
split into three components: superior (+)/inferior, anterior (+)/
posterior, and medial/lateral (+).

The ankle coordinate system was based on the bony
landmarks of the tibial plafond in the centre of the medial
and lateral malleolus. The Z axis (medial/lateral) was passed
through the lateral and medial malleolus pointing laterally.
The X axis (anterior/posterior) of the ankle joint coordinate
system was perpendicular to the Z axis and the long axis of
the shank pointing anteriorly. The Y axis (superior/inferior) was
perpendicular to the Z and X axes and was directed proximally.
The moments were normalized relative to the body weight ×

Fig. 3
Ankle moments during a stair descent gait cycle from the initial contact of the injured leg on the second step to the initial contact of the injured
leg on the ground level. a) and b) Mean ankle dorsiflexion/plantarflexion, internal/external rotational, and inversion/eversion moments with standard
deviation clouds during a stair descent gait cycle. Positive values indicate moments in the dorsiflexion, external rotation, and inversion directions. d)
to l) Statistical parametric mapping analysis results showing that the comparisons in Figures 3f and 3j reached statistical significance, as indicated by
the dashed lines above and below 0. The boxed area represents the area of statistical significance between the two groups. BW, body weight; CAI,
patient with chronic ankle instability without osteochondral lesion of the talus; CAI+OLT, patient with chronic ankle instability and osteochondral
lesion of the talus; H, height.
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height of each subject, and the forces were normalized relative
to the body weight of each subject.

The raw electromyography results were bandpass
filtered at a frequency range of 20 to 500 Hz. For each
trial, electromyography data were full-wave rectified and
filtered using a Butterworth filter with a cut-off frequency
of 10 Hz, and then the non-reproducible part of the signal
was minimized by applying digital smoothing algorithms. The
electromyography data over each 1% of the gait cycle were
averaged as a mean value, so the steep amplitude spikes
were cut away and the signal received a 'linear envelope'.
The electromyography value was calculated as the integral
of the rectified, filtered, and smoothed electromyography
data over time interval T divided by T. The peak values in
the respective muscle tests were used for the normalization
of the electromyography signal. The raw electromyography
and integral electromyography data were real time recorded
and displayed by the data process system; furthermore, the
integral electromyography results were used to validate the
muscle force calculated in the AnyBody Modeling System.
Prominent similarity could be founded in the contradistinction
between the electromyography results and AnyBody results in
the same experiment (Figure 2).

Ankle joint reaction forces and external joint moments
during a stair descent trial were standardized to a complete
(100%) gait cycle from the initial contact of the index leg
on the second step to the initial contact of the index
leg on the ground level. Curve analysis, namely one-dimen-
sional statistical parametric mapping (SPM), was performed
to compare the ankle joint reaction force and joint moment
curve over the entire normalized time series comprising
the stance phase and non-weight-bearing swing phase of

the gait cycle.25,26 All SPM analyses were implemented in
Python 3.7 (Python Software Foundation, USA). Random
field theory was used to calculate the threshold of SPM[F]
and post hoc SPM[t], above which only α = 5% of the
data can reach the test statistical trajectory. Any cluster of
SPM[t] that exceeded this threshold was considered signifi-
cantly different. The maximal joint reaction force and joint
moment during stair descent of the included subjects were
analyzed through one-way, repeated-measure multivariate
analysis of variance (ANOVA) using SPSS (version 19.0; IBM,
USA). The differences were regarded as statistically signifi-
cant when p < 0.05. Significantly different data were fur-
ther analyzed using the Benjamin–Hochberg correction to
determine the significant difference between each pair among
the three groups, which may decrease the false discovery
rate. Post hoc powers and effect sizes were calculated
using G*Power software (v3.1.8; Heinrich-Heine-Universität
Düsseldorf, Germany). Partial eta-squared effect sizes (ηp2
values) were included and interpreted as small (0.01 to 0.059),
moderate (0.06 to 0.139), and large (> 0.14).

Results
The patients with OLT showed significantly more dorsiflexion
moment in the ankle joint compared with healthy subjects
during 38.2% to 40.9% of the stair decent gait cycle, and more
eversion moment in the ankle joint compared with patients
without OLT during 25.5% to 27.6% of the stair decent gait
cycle (Figure 3). The maximal eversion moments in the ankle
joints of the patients without OLT were larger than those of the
healthy subjects (p = 0.005, ANOVA; ηp2 = 0.402; Table I; ).

The patients with OLT showed significantly more
anterior force in the ankle joint compared with healthy

Table I. Kinetic comparison of three groups. Data shown as mean (SD).

Kinetic variable Patients with CAI without OLT Patients with CAI and OLT Healthy subjects p-value‡ ηp2 Power

Maximal dorsiflexion moment 0.078 (0.017) 0.069 (0.016) 0.069 (0.017) 0.449 0.073 0.173

Maximal plantarflexion moment -0.013 (0.004) -0.013 (0.008) -0.007 (0.004) 0.047 0.253 0.595

Maximal external rotational moment 0.034 (0.020) 0.037 (0.021) 0.019 (0.008) 0.104 0.194 0.449

Maximal internal rotational moment -0.005 (0.004) -0.008 (0.005) -0.005 (0.003) 0.267 0.118 0.268

Maximal inversion moment 0.020 (0.010) 0.025 (0.012) 0.025 (0.005) 0.493 0.065 0.157

Maximal eversion moment -0.016 (0.006)* -0.011 (0.003) -0.007 (0.005) 0.005 0.402 0.888

Maximal anterior force 3.183 (1.059) 3.544 (1.434) 2.160 (0.587) 0.048 0.251 0.590

Maximal posterior force 0.008 (0.014) 0.008 (0.012) -0.002 (0.012) 0.211 0.138 0.313

Maximal lateral force 0.634 (0.147) 0.539 (0.161) 0.604 (0.150) 0.456 0.072 0.170

Maximal medial force -0.567 (0.597) -0.882 (0.236)† -0.176 (0.137) 0.005 0.399 0.884

Maximal superior force -0.009 (0.008) -0.007 (0.008) -0.006 (0.010) 0.701 0.033 0.100

Maximal inferior force -4.765 (1.026) -4.315 (0.839) -5.243 (1.022) 0.183 0.149 0.340

Positive values indicate directions toward anterior, lateral, superior, dorsiflexion, external rotation, and inversion, and negative values indicate opposite
directions. Force values were normalized relative to the body weight (newtons, N) of the subject. Moment values were normalized relative to the body
weight (N) and height (m).
*Statistically significant difference between patients with CAI without OLT and healthy subjects using the Benjamin–Hochberg correction (post hoc p =
0.004).
†Statistically significant difference between patients with CAI and OLT and healthy subjects using the Benjamin–Hochberg correction (post hoc p = 0.004).
‡Analysis of variance (ANOVA).
ANOVA, analysis of variance; CAI, chronic ankle instability; OLT, osteochondral lesion of the talus.
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subjects during 42% to 43% of the gait cycle, more medial
force in the ankle joint compared with patients without OLT
during 14.7% to 17.2% of the gait cycle, and more medial
force in the ankle joint compared with healthy subjects during
11.3% to 19.1% of the gait cycle (Figure 4). Compared with
healthy subjects, the patients with OLT showed increased
maximal medial force (p = 0.005, ANOVA; ηp2 = 0.399; Table I; ).

Discussion
The current study demonstrated that altered kinematics
and ground reaction force drive kinetic differences in the
ankle joint, especially the increased dorsiflexion and eversion
moments, and shear force toward the anterior and medial
direction, using musculoskeletal modelling. The current
study provides evidence supporting that the biomechanical
maladaptation and OLT coexist in some patients with CAI.

The patients with OLT showed increased eversion
moment in the ankle joint during 25.5% to 27.6% of the gait
cycle compared with those without OLT. The patients with

CAI but without OLT showed continuous activation deficit in
the early stance phase.13 Deficit in peroneal muscle volume
and reaction time is a well-recognized mechanism in post-
sprain subjects.27–31 The impairment of the eccentric contrac-
tion of the invertors is also present in patients with CAI.32

Eccentric and concentric ankle power decreases during initial
landing in patients with CAI.33 Delayed anterior tibial and
peroneal activation leads to decreased ankle stiffness in initial
contact.33,34 However, the patients with OLT showed more
decreased peroneal muscle activation after initial contact
during stair descent compared with those without OLT, and a
postponed peroneal activation peak compared with healthy
subjects,13 which explains the decreased maximal eversion
moment and delayed increase of eversion moment.31

The current study suggests an increased dorsiflexion
moment of patients with OLT during 38.2% to 40.9% of the
stair decent gait cycle. The restriction of the dynamic sagittal
ankle movement is a biomechanical feature of patients with
OLT.35 Decreased dorsiflexion is related to inferior functional

Fig. 4
Ankle joint reaction forces during a stair descent gait cycle from the initial contact of the injured leg on the second step to the initial contact of
the injured leg on the ground level. a) to c) Mean ankle anterior/posterior, lateral/medial, and superior/inferior forces with standard deviation clouds
during a stair descent gait cycle. Positive values indicate forces in anterior, lateral, and superior directions. d) to l) Statistical parametric mapping
analysis results showing that the comparisons in Figures 4e, 4j, and 4k reached statistical significance, as indicated by the dashed lines above and
below 0. The boxed area represents the area of statistical significance between the two groups. BW, body weight; CAI, patient with chronic ankle
instability without osteochondral lesion of the talus; CAI+OLT, patient with chronic ankle instability and osteochondral lesion of the talus.
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scores.13 A previous study has indicated that patients with
OLT have increased reliance on bony stability, and decreased
reliance on injured lateral ligaments, compared with those
with CAI.36 Compared with patients with CAI but without OLT
showing decreased ankle sagittal stiffness,33,34,37 patients with
concomitant CAI and OLT are featured with increased sagittal
bony constraint compared with healthy subjects, thereby
leading to decreased dorsiflexion motion and increased
dorsiflexion moment.

The patients with OLT showed increased medial shear
force compared with healthy subjects during 11.3% to 19.1%
of the gait cycle. The increased medial shear force during
the stance phase is consistent with the medial migration
of the peak strain shown in a previous study.12 A previous
study on patients with CAI using a modelling method also
suggested a mediolateral change of the shear force; how-
ever, during the first peak and impulse of level walking,
the lateral shear force significantly increased.38 The increased
medial force may be attributed to the insufficiency of both
ligamentous tissue quality and peroneal activation, as static
and dynamic stabilizers of lateral ankle, respectively. The
postponed peroneal activation peak compared with healthy
subjects may produce increased eversion moment during
25.5% to 27.6% of the gait cycle, and restore mediolateral
force back to the same level as the control group. Eccen-
tric/concentric training targeted on neuromuscular changes of
invertors and evertors, particularly eccentric, may decrease the
excessive eversion moment of patients with OLT and exces-
sive joint loading.39 Surgical repair of lateral ankle ligaments
and reinforcement of inferior extensor retinaculum may give
patients static stabilization after initial contact. The improved
dynamic stabilization may also be achieved after the increased
static stability of the ankle, which prevents reinjury to the
lateral ligaments and surrounding structures, and supports
active rehabilitation.19

The current study also suggests an increase in ankle
anterior shear force in patients with OLT, which is consistent
with previous studies.11,38 Decreased dorsiflexion motion and
increased dorsiflexion moment may lead to increased anterior
shear force caused by bony constraint. Surgical treatment
of concomitant CAI and OLT results in increased dynamic
dorsiflexion motion, presumably through the debridement
of impingement tissue.19 Joint mobilization targeting range
of motion restriction may also help to reduce ankle joint
loading.40

Finite element analysis indicated that OLT presence
changed ankle joint stress.41,42 The current study also suggests
altered kinetics towards increased anterior and medial shear
force in OLT presence. The SPM analyses in the current study
allow discussion of temporal differences between patients and
healthy subjects. Following decreased peroneal activation and
decreased static stabilizing effect of ligamentous tissue during
initial contact of patients with OLT, increased medial shear
force during initial contact occurs. Increased eversion moment
comes after, which suggests that coping mechanisms such
as postponed peroneal activation during early stance phase
of gait cycle may occur. During late stance phase, increased
dorsiflexion moment and subsequent increased anterior shear
force occur in patients with OLT, which suggests that higher
demand of ankle dorsiflexion angle in late stance phase
exacerbates increase in ankle anterior shear force in patients

with OLT. Surgical repair of static stabilizers of lateral ankle,
and eccentric/concentric training targeted on neuromuscu-
lar changes of invertors and evertors, may help to reduce
mediolateral ankle joint loading during initial contact and
early stance phase. Surgical debridement of impingement
tissue and joint mobilization targeting dorsiflexion range
of motion restriction may also help to reduce anteroposte-
rior ankle joint loading during late stance phase. Different
rehabilitative methods may complement each other in a
temporal manner. In contrast to attributing OLT to initial
trauma, the current study and relevant studies support that
OLT is developed from a long-term mechanical and functional
joint loading imbalance.17

The current study has several limitations. First, the
number of included subjects is small, which limits the
generalization of the conclusions. There is a potential lack
of statistical power when addressing sample size concerns.
Thus, a larger sample size is needed to draw more specific
conclusions. Second, the musculoskeletal modelling method
is validated through the comparison of recorded muscle
activation and calculation results of the model. A direct
comparison of ankle force and data from a pressure sen-
sor cannot be acquired because of ethical problems. Third,
given the cross-sectional nature of the current study, the
relationship between ankle loading and OLT development
remains unknown. The rationale from ankle loading alteration
to OLT development must be tested in prospective studies
on the in vivo and in vitro cellular and molecular level.43–45

Joint biomechanics and cell molecular change responding to
altered mechanical loading is worthy of further investigation.
Fourth, the current study indicates that kinetic change occurs
in certain phases of the gait cycle, which are relevant to each
other, but the interactive mechanisms cannot be determined
because of the cross-sectional nature of the study.

In conclusion, patients with concomitant CAI and OLT
exhibit increased dorsiflexion and eversion moment, as well
as anterior and medial ankle joint reaction force during stair
descent compared with patients with CAI but without OLT
and healthy subjects, respectively. A rehabilitative regimen
targeting excessive ankle dorsiflexion and eversion moment
may help to reduce ankle joint loading.

Supplementary material
Table showing the location and Pristsch grade of osteochondral
lesion of the talus.
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