Introduction. External fixators are attached to bones with percutaneous pins and wires inserted through soft tissues and bone increasing the risk of infections. Such infections compromise patient outcomes e.g., through pin loosening or loss, failure of fixator to stabilise the fracture, additional surgery, increased pain, and delayed mobilisation. These infections also impact the healthcare system for example, increased OPD visits, hospitalisations, treatments, surgeries and costs. Nurses have a responsibility in the care and management of patients with external fixators and ultimately in the prevention of pin-site infection. Yet, evidence on best practices in the prevention of pin-site infection is limited and variation in pin-site management practices is evident. Various strategies are used for the prevention of pin-site infection including the use of different types of non-medicated and medicated wound dressings. The aim of this retrospective study was to investigate the use of
The purpose of this study was to validate a
Introduction. Demineralised Bone Matrix (DBM) is widely used in Orthopaedics and dentistry as a bone graft substitute and may be used to augment bone formation in load bearing applications. In this study we examine the effect of gamma irradiation and freeze
Introduction. Chronic Achilles tendinopathy is a common overuse injury. There are several modalities of treatment, reflecting difficulties in its management. In particular, due to the well-recognised morbidity associated with surgical decompression, treatment has steered towards a less invasive route.
Introduction. Pre-operative aspiration and culture is the gold standard for the diagnosis of peri-prosthetic infection. This study aimed to ascertain the diagnostic accuracy of culture of joint aspiration with or without saline re-aspiration in the event of a dry-tap. Patients/Materials & Methods. Retrospective analysis of 343 hip aspirations in patients deemed to have moderate-high risk of infection and ultimately proceeded to revision arthroplasty over 12 years at a large quaternary referral centre where pre-operative aspiration is routine. Results. Fluid was aspirated in 141(41%) cases and
No single test is 100% sensitive and specific for the diagnosis of prosthetic joint infection. Joint aspiration is currently the only preoperative investigation that can establish the identity of the infecting organism and its antibiotic susceptibilities. Frequently when attempting to aspirate a joint a ‘dry tap occurs as fluid cannot be aspirated. In this situation, normal saline may be injected into the joint and then reaspirated to provide fluid for culture. The aim of this study was to ascertain the diagnostic accuracy of culture of joint aspiratie with or without saline reaspiration in the event of a
Background. Plantar fasciitis is a frequently chronic and disabling cause of foot pain in adults. This prospective study aims to evaluate the analgesic effect of ultrasound guided
Objectives. During open orthopaedic surgery, joints may be exposed to air, potentially leading to cartilage
Aims. Tissue adhesives (TAs) are a commonly used adjunct to traditional surgical wound closures. However, TAs must be allowed to
Retained polymethylmethacrylate (PMMA) debris in surgical instrument trays is a rare, but disquieting situation for the arthroplasty surgeon. Although retained debris could be considered to be sterile after autoclaving, there is no peer-reviewed literature to support this assumption. This uncertainty and subsequent fear of contamination from this bioburden often leads to operating room personnel turning over entire surgical tables and opening new surgical instruments, which consumes time and burdens a hospital's sterilization infrastructure. Consequently, the purpose of the current study was to determine if retained, heavily contaminated PMMA in surgical trays could be effectively sterilized through clinically utilized autoclave protocols. MSSA (Xen36, Perkin Elmer) biofilm was grown on identically sized PMMA (Palacos R) coupons for 72-hour duration. Following incubation, coupons were exposed to three commonly used sterilization protocols. Cobalt-Chrome (CC) coupons were included in the same tray, replicating instruments in proximity to retained PMMA. Autoclave protocols included: 1.) Single Instrument Flash protocol: Pre-vac, 270° F, 10 min exposure, 1 min
Design of bone tissue engineering scaffolds imposes a number of requirements for their physical properties, in particular porosity and mechanical behaviour. Alginates are known as a potential material for such purposes, usually deploying calcium as a cross-linker. Calcium over-expression was reported having proinflammatory effect, which is not always desirable. Contrary to this, barium has better immunomodulatory outcome but data for barium as a cross-linker are scarce. In this work the objective was to produce Ba-linked alginates and compare their viscoelastic properties with Ca-linked controls in vitro. Sodium alginate aqueous solution (1 wt%) with 0.03 wt.% CaCl. 2. is gelled in dialysis tubing immersed in 27 mM CaCl. 2. (controls) or BaCl. 2. , for 48 h, followed by freeze-drying and rehydration (with 0.3 wt.% CaCl. 2. and 0.8 wt.% NaCl). Hydrogel discs (diameter 8-10 mm, thickness 4-6 mm) were assessed in
Abstract. Objective. In this systematic review we aim to compare wound complication rates from Negative Pressure Wound Therapy (NPWT) to
Aim. Local antibiotics released through a carrier is a commonly used technique to prevent infection in orthopaedic procedures. An interesting carrier in aseptic bone reconstructive surgery are bone chips impregnated with AB solution. Systemically administered Cefazolin (CFZ) is used for surgical site infection prophylaxis however in vitro study showed that fresh frozen and processed bone chips impregnated with CFZ solution completely release the CFZ within a few hours. On the other hand irradiated freeze-dried bone chips, treated with supercritical CO2 (scCO2) have been shown to be an efficient carrier for the antibiotics vancomycine or tobramycine. With this pilot study we wanted to investigate if CFZ solution impregnation of bone chips treated with scCO2 shows a more favorable release pattern of CFZ. Method. The bone chips were prepared using the standard scCO2 protocol and were impregnated with 100 mg/ml cefazolin at different timepoints during the process: before freeze
The aim of this study is to print 3D polycaprolactone (PCL) scaffolds at high and low temperature (HT/LT) combined with salt leaching to induced porosity/larger pore size and improve material degradation without compromising cellular activity of printed scaffolds. PCL solutions with sodium chloride (NaCl) particles either directly printed in LT or were casted,
The purpose of this study is to enhance massive bone allografts osseointegration used to reconstruct large bone defects. These allografts show >50% complication rate requiring surgical revision in 20% cases. A new protocol for total bone decellularisation exploiting the vasculature can offer a reduction of postoperative complication by annihilating immune response and improving cellular colonization/ osseointegration. The nutrient artery of 18 porcine bones - humerus/femur/radius/ulna - was cannulated. The decellularization process involved immersion and sequential perfusion with specific solvents over a course of one week. Perfusion was realized by a peristaltic pump (mean flow rate: 6ml/min). The benefit of arterial perfusion was compared to a control group kept in immersion baths without perfusion. Bone samples were processed for histology (HE, Masson's trichrome and DAPI for cell detection), immunohistochemistry (IHC : Collagen IV/elastin for intraosseous vascular system evaluation, Swine Leukocyte Antigen – SLA for immunogenicity in addition to cellular clearance) and DNA quantification. Sterility and solvent residues in the graft were also evaluated with thioglycolate test and pH test respectively. Compared to native bones, no cells could be detected and residual DNA was <50ng/mg
This study aimed to describe the morphology of the coracoid process and determine the frequency of commonly observed patterns. The second purpose was to determine the location of inferior tunnel exit with superior based tunnel drilling and the superior tunnel exit with inferior based tunnel drilling. A sample of 100
Osteosarcoma and other types of bone cancers often require bone resection, and backfill with cement. A novel silorane-based cement without PMMA's drawbacks, previously developed for dental applications, has been reformulated for orthopedic use. The aim of this study is to assess each cement's ability to elute doxorubicin, maintain its potency, and maintain suitable weight-bearing strength. The silorane-based epoxy cement was synthesized using a platinum-based Lamoreaux's catalyst. Four groups of cement were prepared. Two PMMA groups, one without any additives, one with 200 mg of doxorubicin. Two silorane groups: one without any additive, one with doxorubicin, added so that the w% of drug into both cements were equal. Pellets 6 × 12 mm were used for testing (ASTM F451). n=10. Ten pellets from each group were kept
According to the latest report from the German Arthroplasty Registry, aseptic loosening is the primary cause of implant failure following primary hip arthroplasty. Osteolysis of the proximal femur due to the stress-shielding of the bone by the implant causes loss of fixation of the proximal femoral stem, while the distal stem remains fixed. Removing a fixed stem is a challenging process. Current removal methods rely on manual tools such as chisels, burrs, osteotomes, drills and mills, which pose the risk of bone fracture and cortical perforation. Others such as ultrasound and laser, generate temperatures that could cause thermal injury to the surrounding tissues and bone. It is crucial to develop techniques that preserve the host bone, as its quality after implant removal affects the outcome of a revision surgery. A gentler removal method based on the transcutaneous heating of the implant by induction is proposed. By reaching the glass transition temperature (T. G. ) of the periprosthetic cement, the cement is expected to soften, enabling the implant to be gently pulled out. The in-vivo environment comprises body fluids and elevated temperatures, which deteriorate the inherent mechanical properties of bone cement, including its T. G. We aimed to investigate the effect of fluid absorption on the T. G. (ASTM E2716-09) and Vicat softening temperature (VST) (ISO 306) of Palacos R cement (Heraeus Medical GmbH) when
Fracture of contemporary femoral stems is a rare occurrence. Earlier THR stems failed due to design issues or post manufacturing heat treatments that weakened the core metal. Our group identified and analyzed 4 contemporary fractured femoral stems after revision surgery in which electrochemical welds contributed to the failure. All four stems were proximally porous coated titanium alloy components. All failures occurred in the neck region post revision surgery in an acetabular cup exchange. All were men and obese. The fractures occurred at an average of 3.6 years post THR redo (range, 1.0–6.5 years) and 8.3 years post index surgery (range, 5.5–12.0 years). To demonstrate the effect of electrocautery on retained femoral stems following revision surgery, we applied intermittent electrosurgical currents at three intensities (30, 60, 90 watts) to the polished neck surface of a titanium alloy stem under
Hypochlorous acid (HOCl) is a potent anti-bacterial agent which could reduce periprosthetic joint infection. Early infection complications in joint replacements are often considered to be due to local contamination at the time of surgery and result in a significant socioeconomic cost. Current theatre cleaning procedures produce “clean” operating theatres which still contain bacteria (colony forming units, CFU). Reducing this bacterial load may reduce local contamination at the time of surgery. HOCl is produced naturally in the human neutrophil and has been implicated as the primary agent involved in bacterial killing during this process. In vitro research confirms its efficacy against essentially all clinically relevant bacteria. The recent advent of commercial production of HOCl, delivered as a fog, has resulted in extensive use in the food industry. Reported lack of corrosion and high anti-bacterial potency are seen as two key factors for the use of HOCl in the orthopaedic environment. Prior work by the authors comparing human cell toxicity of HOCl, chlorhexidine and iodine solutions shows favourable results. This study evaluates use of neutral HOCl applied as a