Advertisement for orthosearch.org.uk
Results 1 - 20 of 252
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 131 - 131
11 Apr 2023
van Hoogstraten S Arts J
Full Access

An increasingly used treatment for end-stage ankle osteoarthritis is total ankle replacement (TAR). However, implant loosening and subsidence are commonly reported complications, leading to relatively high TAR failure rates. Malalignment of the TAR has often been postulated as the main reason for the high incidence of these complications. It remains unclear to what extent malalignment of the TAR affects the stresses at the bone-implant interface. Therefore, this study aims to elucidate the effect of TAR malalignment on the contact stresses on the bone-implant interface, thereby gaining more understanding of the potential role of malalignment in TAR failure. FE models of the neutrally aligned as well as malaligned CCI Evolution TAR implant (Van Straten Medical) were developed. Separate models were developed for the tibial and talar segment, with the TAR components in neutral alignment and 5° and 10° varus, valgus, anterior and posterior malalignment, resulting in a total of 9 differently aligned TAR models. Loading conditions of the terminal stance phase of the gait cycle, when the force on the ankle joint is highest (5.2x body weight), were applied. Peak and mean contact pressure and shear stress at the bone-implant interface were analyzed. Also, stress distributions on the bone-implant interface were visualized. In the neutrally aligned tibial and talar TAR models, peak contact pressures of respectively 98.4 MPa and 68.2 MPa, and shear stresses of respectively 49.3 MPa and 39.0 MPa were found. TAR malalignment increases peak contact pressure and shear stress on the bone-implant interface. A maximum peak contact pressure of 177 MPa was found for the 10° valgus malaligned tibial component and the highest shear stress found was 98.5 MPa for the 10° posterior malaligned talar model. Upon TAR malalignment contact stresses increase substantially, suggesting that proper orientation of the TAR is needed to minimize peak stresses on the bone-implant interface. This is in line with previous studies, which state that malalignment considerably increases bone strains, micromotion, and internal TAR contact pressures, which might increase the risk of TAR failure. Further research is needed to investigate the relationship between increased contact stresses at the bone-implant interface and TAR failure


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 7 - 7
1 Feb 2021
Glenday J Gonzalez FQ Wright T Lipman J Sculco P Vigdorchik J
Full Access

Introduction. Varus alignment in total knee replacement (TKR) results in a larger portion of the joint load carried by the medial compartment. [1]. Increased burden on the medial compartment could negatively impact the implant fixation, especially for cementless TKR that requires bone ingrowth. Our aim was to quantify the effect varus alignment on the bone-implant interaction of cementless tibial baseplates. To this end, we evaluated the bone-implant micromotion and the amount of bone at risk of failure. [2,3]. Methods. Finite element models (Fig.1) were developed from pre-operative CT scans of the tibiae of 11 female patients with osteoarthritis (age: 58–77 years). We sought to compare two loading conditions from Smith et al.;. [1]. these corresponded to a mechanically aligned knee and a knee with 4° of varus. Consequently, we virtually implanted each model with a two-peg cementless baseplate following two tibial alignment strategies: mechanical alignment (i.e., perpendicular to the tibial mechanical axis) and 2° tibial varus alignment (the femoral resection accounts for additional 2° varus). The baseplate was modeled as solid titanium (E=114.3 GPa; v=0.33). The pegs and a 1.2 mm layer on the bone-contact surface were modeled as 3D-printed porous titanium (E=1.1 GPa; v=0.3). Bone material properties were non-homogeneous, determined from the CT scans using relationships specific to the proximal tibia. [2,4]. The bone-implant interface was modelled as frictional with friction coefficients for solid and porous titanium of 0.6 and 1.1, respectively. The tibia was fixed 77 mm distal to the resection. For mechanical alignment, instrumented TKR loads previously measured in vivo. [5]. were applied to the top of the baseplate throughout level gait in 2% intervals (Fig.1a). For varus alignment, the varus/valgus moment was modified to match the ratio of medial-lateral force distribution from Smith et al. [1]. (Fig.1b). Results. For both alignments and all bones, the largest micromotion and amount of bone at risk of failure occurred during mid stance, at 16% of gait (Figs.2,3). Peak micromotion, located at the antero-lateral edge of the baseplate, was 153±32 µm and 273±48 µm for mechanical and varus alignment, respectively. The area of the baseplate with micromotion above 40 µm (the threshold for bone ingrowth. [3]. ) was 28±5% and 41±4% for mechanical and varus alignment, respectively. The amount of bone at risk of failure at the bone-implant interface was 0.5±0.3% and 0.8±0.3% for the mechanical and varus alignment, respectively. Discussion. The peak micromotion and the baseplate area with micromotion above 40 µm increased with varus alignment compared to mechanical alignment. Furthermore, the amount of bone at risk of failure, although small for both alignments, was greater for varus alignment. These results suggest that varus alignment, consisting of a combination of femoral and tibial alignment, may negatively impact bone ingrowth and increase the risk of bone failure for cementless tibial baseplates of this TKR design


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 12 - 12
14 Nov 2024
Vautrin A Thierrin R Wili P Voumard B Rauber C Klingler S Chapuis V Varga P Zysset P
Full Access

Introduction. Achieving an appropriate primary stability after implantation is a prerequisite for the long-term viability of a dental implant. Virtual testing of the bone-implant construct can be performed with finite element (FE) simulation to predict primary stability prior to implantation. In order to be translated to clinical practice, such FE modeling must be based on clinically available imaging methods. The aim of this study was to validate an FE model of dental implant primary stability using cone beam computed tomography (CBCT) with ex vivo mechanical testing. Method. Three cadaveric mandibles (male donors, 87-97 years old) were scanned by CBCT. Twenty-three bone samples were extracted from the bones and conventional dental implants (Ø4.0mm, 9.5mm length) were inserted in each. The implanted specimens were tested under quasi-static bending-compression load (cf. ISO 14801). Sample-specific homogenized FE (hFE) models were created from the CBCT images and meshed with hexahedral elements. A non-linear constitutive model with element-wise density-based material properties was used to simulate bone and the implant was considered rigid. The experimental loading conditions were replicated in the FE model and the ultimate force was evaluated. Result. The experimental ultimate force ranged between 67 N and 789 N. The simulated ultimate force correlated better with the experimental ultimate force (R. 2. =0.71) than the peri-implant bone density (R. 2. =0.30). Conclusion. The developed hFE model was demonstrated to provide stronger prediction of primary stability than peri-implant bone density. Therefore, hFE Simulations based on this clinically available low-radiation imaging modality, is a promising technology that could be used in future as a surgery planning tool to assist the clinician in evaluating the load-bearing capacity of an implantation site. Acknowledgements. Funding: EU's Horizon 2020 grant No: 953128 (I-SMarD). Dental implants: THOMMEN Medical AG


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia. Methods. In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee. Results. Titanium lattice implants were able to restore the mechanical environment of the native tibia for both UKA and TKA designs. Maximum stress at the bone-implant interface ranged from 1.2 MPa to 3.3 MPa compared with 1.3 MPa to 2.7 MPa for the native tibia. The conventional solid UKA and TKA implants reduced the maximum stress in the bone by a factor of 10 and caused > 70% of bone surface area to be underloaded compared to the native tibia. Conclusion. Titanium lattice implants maintained the natural mechanical loading in the proximal tibia after UKA and TKA, but conventional solid implants did not. This is an exciting first step towards implants that maintain bone health, but such implants also have to meet fatigue and micromotion criteria to be clinically viable. Cite this article: Bone Joint Res 2022;11(2):91–101


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 4 - 4
1 Apr 2018
Baetz J Messer P Lampe F Pueschel K Klein A Morlock M Campbell G
Full Access

INTRODUCTION. Loosening is a major cause for revision in uncemented hip prostheses due to insufficient primary stability. Primary stability after surgery is achieved through press-fit in an undersized cavity. Cavity preparation is performed either by extraction (removing bone) or compaction (crushing bone) broaching. Densification of trabecular bone has been shown to enhance primary stability in human femora; however, the effect of clinically used compaction and extraction broaches on human bone with varying bone mineral density (BMD) has not yet been quantified. The purpose of this study was to determine the influence of the broach design and BMD on the level of densification at the bone-cavity interface, stem seating, the bone-implant contact area and the press-fit achieved. METHODS. Paired human femora (m/f=11/12, age=60±18 y) were scanned with quantitative computed tomography (QCT, Philips Brilliance 16) before broaching, with the final broach, after its removal and after stem implantation. Compaction broaching (n=4) was compared in an in situ (cadaver) study against extraction broaching with blunt tooth types (n=3); in an ex situ (excised femora) study, compaction broaching was compared against extraction broaching with sharp tooth types (n=8 each). QCT data were resampled to voxel sizes of 1×1×1 mm (in situ) and 0.5×0.5×1 mm (ex situ). Mean trabecular BMD of the proximal femur was determined. The cavity volumes were segmented in the post-broach images (threshold: −250 mgHA/cm3, Avizo 9.2) and a volume of interest (VOI) of one-voxel thickness was added around the cavity to capture the interfacial bone. VOIs were transferred to the pre-broach image and bone densification was calculated within each VOI as the increase from pre- to post-broach image (MATLAB). Detailed surface data sets of broaches and stems were collected with a 3D laser-scanner (Creaform Handyscan 700) and aligned with the segmented components in the CT scans (Fig. 1). Stem seating was defined as the difference between the top edge of the stem coating and the final broach. Distance maps between the stem and cavity surface were generated to determine the bone-implant contact area and press-fit. All parameters were analysed between 5 mm distal to the coating and 1 cm distal to the lesser trochanter and analysed with related-samples Wilcoxon signed rank and Spearman's correlation tests (IBM SPSS Statistics 22). RESULTS. Trabecular BMD ranged from 81 to 221 mgHA/cm3. Densification was higher with compaction compared to sharp (p=0.034), but not blunt extraction broaching (p=1.000). Proximal bone-implant contact area, press-fit and stem seating did not differ between broaching methods. Bone-implant contact area and bone densification increased with trabecular BMD (rs=0.658, p=0.001 and rs=0.443, p=0.034), press-fit with stem seating (rs=0.746, p<0.001) and contact area with bone densification (rs=0.432, p=0.039). DISCUSSION. Sharp extraction broaching reduces densification at the bone-cavity interface, but does not affect the press-fit or contact area. Trabecular BMD was positively associated with contact area, and stem seating with press-fit. Future studies will aim to link these findings to primary stability and influence on periprosthetic fractures. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 288 - 288
1 May 2009
Kalia P Oussedik S Konan S Dodd M Coathup M Blunn G
Full Access

Introduction: Aseptic loosening at the bone-implant interface of THA acetabular components is a significant cause of implant failure. This loosening has been attributed either to wear particle-induced osteolysis or to the effects of joint fluid-pressure. It may be possible to prevent the loosening of implants by improving fixation between the bone and implant, or promoting the growth of a biological bony seal, in order to prevent the influx of wear particles or pressurized joint fluid. Additionally in revision implants it is important to promote osseointegration in situations where bone stock may be limited. The hypothesis of this study was spraying autologous BMSCs in fibrin glue onto the surface of HA-coated acetabular components would increase bone formation around the implant and improve bone-implant contact. Materials and Methods: Bone marrow was aspirated from the iliac crest of six goats, and BMSCs isolated and expanded in vitro. 10 x 10e6 BMSCs were suspended in reconstituted thrombin pre-operatively. A standard posterior approach was used. The acetabular shell was then coated with 2 ml of fibrin glue, with (n=6) or without 10 x 10e6 autologous BMSCs (n=6), and the acetabular component impacted into position. Antibiotic and analgesic prophylaxes were carried out. All animals were weight bearing within 48 hours post-operatively. Walking and ground reaction forces were assessed pre-operatively, as well as 6 and 12 weeks post-operatively. Results were expressed as a percentage of force transmitted through the right leg versus the left leg. After 12 weeks, the acetabulae were retrieved, and processed for histology. The percentage of new bone around the cups was measured within 5 radial zones, using image analysis. Bone-implant contact was also analysed between the new bone and implant surface. Mann Whitney U test was used to show statistical significance. Results: New bone formation in Zone 5 showed a significant increase in the BMSC group (71.97±10.91%), when compared to the controls (23.85±15.13%, p=0.028). The other zones did not show a significant difference. Overall new bone growth in the BMSC group was 30% greater than the control group (71.42±8.97% and 54.22±16.56%, respectively, p=0.58). Bone-implant contact was significantly improved in the BMSC group (20.03±4.64%), in contrast to the control group (13.71±8.32%, p=0.027). With regards to the force plate analysis, there was no significant difference in loading between groups at both 6 weeks (Controls-79.74±3.63%, BMSCs-59.39±9.33%, p=0.086) and 12 weeks (Controls-86.0%±2.85%, BMSCs-62.33±5.12%, p=0.055). Discussion and Conclusions: In this study, overall bone growth was greater when cups were treated with BMSCs. Bone-implant contact was significantly improved as well. This study has clinical applications, as using MSCs in fibrin glue promotes a bony seal in contact with the implant which may prevent the migration of particles, or joint fluid, decreasing the likelihood of aseptic loosening of THAs, and improving their longevity. Also, this technique may improve fixation in situations where bone stock is reduced


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 15
1 Mar 2002
Brooks R Rushton M Wimhurst J Rushton N
Full Access

This study investigated the effects of wear particles, produced from a number of implant materials, at the bone-implant interface using a small animal model. Particles were prepared from metal, ceramic and polymer replacement joint components or implant grade stock by grinding the materials against a diamond embedded grinding pad. The mean diameter of the particles ranged from 1.5mm to 3.2mm. Sterilised particles were suspended in sterile saline containing 2% v/v male Sprague-Dawley serum at a concentration of 109 particles per ml. Seventy-two male Sprague-Dawley rats were assigned to twelve groups of six animals. A ceramic pin was inserted into the right tibia of each animal. Six groups were assigned a particle type with one group acting as vehicle control. 100ml of particle suspension or vehicle was injected into each knee joint at 8, 10 and 12 weeks following implantation and the animals were killed 2 weeks later. Of the remaining five groups, four were assigned a particle type and one was the vehicle control. These animals were injected with 100ml of particle suspension or vehicle at 20, 22 and 24 weeks following pin implantation and were killed 2 weeks later. The tibia and femora were removed, disarticulated and processed for histology. The total gap between pin and bone, including fibrous tissue, was measured. Specimens showed no signs of infection either clinically or in the histopathology. All materials tested produced lesions at the bone-implant interface. A significant difference was seen between metal injected vs. vehicle control animals and aluminium oxide injected vs. vehicle controls. Particles of stainless steel produced the greatest response and this finding may have implications for the use of metal on metal articulations aimed at eliminating polyethylene wear


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 67 - 67
1 Jan 2016
Chalayon O Epperson RT Bloebaum R Abdo N
Full Access

Introduction. Fixation has been shown to be the primary indicator of an implant's long-term success. Failure to achieve attachment, especially in acetabular and TKR, has been attributed to a lack of initial stability and gaps between the implant and bone. Gaps greater than 150 microns allow fibrous tissue to form. Properly addressing implant design features can help avoid adverse outcomes. ASTM International Standards (F1854-09) do not assess the relationship between porosity of the coating and that of cancellous bone, which can lead to an absence of mechanical interlock. This study developed a virtual program that uses human cancellous bone to predict potential skeletal attachment for implants properly placed for TJR. The goal of the Virtual Paradigm was to assess initial contact surface area at the time of implantation. Methods. Seven human femurs and tibias were used. Bones from 11 males and 3 females were used, ages ranging from 40 to 61. Five porous coatings were assessed: Biofoam (Wright Medical), Fiber Mesh, CSTI, Tantalum (Zimmer), and P² (DJO Global). Specimen Processing. Each bone was resected 2 mm beyond the articulating surface into the cancellous host using surgical TKA instruments. The specimens and coatings were embedded in PMMA. For Part 1, the specimens and coatings were cut perpendicular to the neutral axis, displaying a surface view for scanning electron microscopy (SEM). For Part 2, the coatings were cross-sectioned for SEM, ground, and polished to optical finish. Imaging: Part 1. The bone and coating sections displaying the surface view were imaged using SEM under backscatter (BSE) at 22x. Three images were taken of each tibia section, resulting in 12 images. Three images were taken of each femur section, resulting in 9 images. Analysis: Part 1. Each bone image was overlaid onto each coating image. Using various computer programs (IQ Materials, Fastone Image Viewer, Corel Photopaint X3), available bone was normalized to 100% and bone-implant contact was marked red (Figure 1). Imaging: Part 2. The cross-sectioned coatings were imaged with SEM-BSE at 30x. For each implant, 3 images were taken and assembled together (Microsoft Research ICE). Analysis: Part 2. Using the programs, bone images were overlaid onto each coating to establish a 200-micron region of initial contact. The surface of the coating within this region was calculated to represent surface roughness (Figure 2). Results. Bone porosity ranged from 14.04%-23.04% in the femur and 11.85%-23.68% in the tibia. Percent contact between the implant and bone ranged from 3.28%-43.47% (Figure 1). Surface roughness ranged from 5.4–11.1 mm (Figure 2). Opening porosity of the coatings ranged from 52.54%-94.97% (Figure 3). Discussion. Long-term success of cementless TJR depends on mechanical stability and bone attachment. This virtual study addressed fixation and contact between coatings and cancellous bone, and it can be used to evaluate innovative materials intended for TJR. This program challenged the limits of ASTM Standards for screening coatings. The results of this study demonstrated that the Virtual Bone-Implant Surface Contact Paradigm could be used in the early phases of implant development and testing to assess clinical success


Bone & Joint Open
Vol. 2, Issue 8 | Pages 638 - 645
1 Aug 2021
Garner AJ Edwards TC Liddle AD Jones GG Cobb JP

Aims. Joint registries classify all further arthroplasty procedures to a knee with an existing partial arthroplasty as revision surgery, regardless of the actual procedure performed. Relatively minor procedures, including bearing exchanges, are classified in the same way as major operations requiring augments and stems. A new classification system is proposed to acknowledge and describe the detail of these procedures, which has implications for risk, recovery, and health economics. Methods. Classification categories were proposed by a surgical consensus group, then ranked by patients, according to perceived invasiveness and implications for recovery. In round one, 26 revision cases were classified by the consensus group. Results were tested for inter-rater reliability. In round two, four additional cases were added for clarity. Round three repeated the survey one month later, subject to inter- and intrarater reliability testing. In round four, five additional expert partial knee arthroplasty surgeons were asked to classify the 30 cases according to the proposed revision partial knee classification (RPKC) system. Results. Four classes were proposed: PR1, where no bone-implant interfaces are affected; PR2, where surgery does not include conversion to total knee arthroplasty, for example, a second partial arthroplasty to a native compartment; PR3, when a standard primary total knee prosthesis is used; and PR4 when revision components are necessary. Round one resulted in 92% inter-rater agreement (Kendall’s W 0.97; p < 0.005), rising to 93% in round two (Kendall’s W 0.98; p < 0.001). Round three demonstrated 97% agreement (Kendall’s W 0.98; p < 0.001), with high intra-rater reliability (interclass correlation coefficient (ICC) 0.99; 95% confidence interval 0.98 to 0.99). Round four resulted in 80% agreement (Kendall’s W 0.92; p < 0.001). Conclusion. The RPKC system accounts for all procedures which may be appropriate following partial knee arthroplasty. It has been shown to be reliable, repeatable and pragmatic. The implications for patient care and health economics are discussed. Cite this article: Bone Jt Open 2021;2(8):638–645


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 84 - 84
1 Aug 2012
MacLeod A Pankaj P Simpson H
Full Access

Finite element modelling is being extensively used to evaluate the biomechanical behaviour of fractured bone treated with fixation devices. Appropriate modelling of the bone-implant interface is key to quality biomechanical prediction. The present study considers this interface modelling in the context of locking plates. A majority of previous studies assume the interface to be represented by a tied constraint or a fully bonded interface. Many other studies incorporate a frictional interface but ignore screw threads. This study compares the various interface modelling strategies. An interface with screw threads explicitly included is also considered. The study finds that interface modelling has significant impact on both the global and local behaviour. Globally, the load-deflection behaviour shows considerable difference depending on the interface model. Locally, the stress-strain environment within the bone close to the screws is significantly altered. The results show that the widely used tie constraint can overestimate stiffness of a construct which must be correctly predicted to avoid non-union or periprosthetic re-fracture, especially in osteoporotic bone. In addition, the predictions of screw loosening, bone damage and stress shielding are very different when screw threads are included in the model


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 30 - 30
1 Aug 2012
Smith J Sengers B Aarvold A Tayton E Dunlop D Oreffo R
Full Access

The osteo-regenerative properties of allograft have recently been enhanced by addition of autogenous skeletal stem cells to treat orthopaedic conditions characterised by lost bone stock. There are however, multiple disadvantages to allograft, including cost, availability, consistency and potential for disease transmission, and trabecular tantalum represents a potential alternative. Tantalum is already in widespread orthopaedic use, although in applications where there is poor initial implant stability, or when tantalum is used in conjunction with bone grafting, loading may need to be limited until sound integration has occurred. Development of enhanced bone-implant integration strategies will improve patient outcomes, extending the clinical applications of tantalum as a substitute for allograft. The aim of this study was to examine the osteoconductive potential of trabecular tantalum in comparison to human allograft to determine its potential as an alternative to allograft. Human bone marrow stromal cells (500,000 cells per ml) were cultured on blocks of trabecular tantalum or allograft for 28 days in basal and osteogenic media. Molecular profiling, confocal and scanning electron microscopy, as well as live-dead staining and biochemical assays were used to characterise cell adherence, proliferation and phenotype. Cells displayed extensive adherence and proliferation throughout trabecular tantalum evidenced by CellTracker immunocytochemistry and SEM. Tantalum-cell constructs cultured in osteogenic conditions displayed extensive matrix production. Electron microscopy confirmed significant cellular growth through the tantalum to a depth of 5mm. In contrast to cells cultured with allograft in both basal and osteogenic conditions, cell proliferation assays showed significantly higher activity with tantalum than with allograft (P<0.01). Alkaline phosphatase (ALP) assay and molecular profiling confirmed no significant difference in expression of ALP, Runx-2, Col-1 and Sox-9 between cells cultured on tantalum and allograft. These studies demonstrate the ability of trabecular tantalum to support skeletal cell growth and osteogenic differentiation comparable to allograft. Trabecular tantalum represents a good alternative to allograft for tissue engineering osteo-regenerative strategies in the context of lost bone stock. Such clinical scenarios will become increasingly common given the ageing demographic, the projected rates of revision arthroplasty requiring bone stock replacement and the limitations of allograft. Further mechanical testing and in vivo studies are on-going


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 369 - 369
1 Oct 2006
Blackburn J Coathup M Smith T Goodship A Blunn G
Full Access

Introduction: The main problem facing the longevity of total hip replacements (THR) is wear particle induced osteolysis, particularly around the acetabular component. The articulating surfaces produce wear particles that migrate in the fibrous tissue membrane along the acetabular implant-bone interface causing osteolysis and subsequent implant loosening. The hypothesis that we investigated was that uncemented acetabular interfaces are more effective than cemented implants at resisting progressive osteolysis through bone attachment and the formation of a biological seal. Methods: THR surgery was performed in an ovine model. Implants remained in vivo for 1 year. Femoral heads were roughened in order to generate wear debris and aseptic loosening of the acetabular component. Sheep were randomly assigned to one of three experimental groups: cemented polyethylene, grit blasted or plasma sprayed porous acetabular components with a polyethylene insert. Ground Reaction Force (GRF) data was collected pre-op and at 12, 24, 36 and 52 weeks post op. Retrieved specimens were analysed radiographically, histologically and using Scanning Electron Microscopy (SEM). A mould was made of the polyethylene liner and head penetration rates quantified using a shadowgraph technique. Thin sections through the acetabuli were prepared and image analysis used to quantify fibrous tissue (FT) thickness at the bone-implant interface. Mann-Whitney U tests were used for comparative statistical analysis where p< 0.05 were classified as significant. Results: GRF demonstrated functional hips. A gradual increase was seen until week 36 followed by a decrease until retrieval suggesting the onset of aseptic loosening. 42.86% of control, 60% of grit blasted and 50% of porous coated components were deemed radiographically loose. Mean linear penetration rates demonstrated significantly less penetration within the porous cups (p=0.003, control and p=0.036, grit blasted). SEM established that wear particles generated were < 1μm in size. Light microscopy of thin sections revealed the common mechanism of loosening involving a resorption wedge at the interface with progressive bone loss. In all cases, the FT layer was greatest at the rim of the cup and gradually decreased towards the apex. The grit blasted group had the thickest FT layer adjacent to the cup. Under polarised light, wear debris was seen packed within macrophages in all sections. Discussion: GRF data demonstrated grit blasted cups to have least function. This was confirmed through histology as they had the thickest FT layer surrounding the acetabular shell suggesting increased aseptic loosening of its component due to wear particles being able to access the interface more easily. Data corroborates radiographic results. In conclusion, porous and control cups performed better than grit blasted cups. Acknowledgments: EPSRC


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 144 - 144
1 Mar 2013
Chen D Bertollo N Harper W Stanford R Walsh W
Full Access

This study was performed to compare the mechanism of bone-implant integration and mechanical stability among three popularly used cementless implant surfaces. Plasma sprayed porous surface (TiPL), grit-blasted rough surface (TiGB), and hydroxyapatite coated implant surface (HA) were tested in a sheep model at 4 and 12 weeks. The integration patterns were investigated using histology, histomorphometry, and mechanical strength by push-out test. All three groups demonstrated early bone ongrowth on their surfaces, with much of the ongrowth resembling contact osteogenesis. TiPL group showed bone anchorage into porous coating with new bone ingrowth into the pores. HA group revealed small cracks at its coating at 12 weeks time point. Plasma sprayed porous surface also demonstrated its superior mechanical stability maybe reinforced by its bone anchorage, whearas, HA surface exhibited higher osteoconductivity with highest ongrowth rate


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 272 - 272
1 May 2006
Heaton-Adegbile P Hussell JG Tong J
Full Access

Objective: To develop in-vitro experiments that measure the strain distributions at the bone-implant and bone-cement interface of the acetabular region under physiological loading conditions for cemented and cementless sockets. Experimental model: Four hemi-pelvic specimens of saw bones were used. Following careful placement of six protected precision strain gauges, two specimens were prepared to receive a cemented polyethylene cup (Depuy Charnley Elite 53/28). Another two specimens were prepared and implanted with un-cemented Duraloc 58/28 cups. Press-fit technique was validated by torque measurements. Background: Symptoms associated with prosthetic migration result from osteoclast induced bone resorption at the interface adjacent to bone. We aim to develop a new and more accurate method of measuring strains at this critical interface. Methods: To simulate quasi-static loading, selected variables of hip joint force relative to the cup during normal walking was used for quasi-static tests on an Instron 1603 testing machine. The magnitude and orientation of the principal strains (maximum and minimum) were calculated based on the readings of strains from a 32 channel digital acquisition system. Results: The magnitude and distribution of acetabular trabecular bone strains are dependent on the type of cup material (un-cemented/cemented) implanted. At the position of maximum load, the maximum principal strain in the un-cemented specimens was 14.4 times higher than that for the cemented specimens (T-value = −96.40, P-value = 0.007). The highest recorded tensile strains in these specimens were localised to the acetabular rim of the posterior-superior quadrant. For the cemented specimens, the maximum principal strains are highest in the dorsal acetabulum, at a location that approximates to the centre of rotation of the replaced hip joint. Shear strains in the posterior-superior quadrant of both cementless and cemented acetabuli surpass the maximum principal strains. Conclusion: In both cemented and un-cemented specimens, the maximum shear and principal strains magnitude show similar spatial and statistical distribution. As indicators of local failure prospect within the acetabulum, these strains suggest that the posterior-superior quadrant is the most likely site for load-induced micro-fractures, in both cemented and cementless acetabuli


Bone & Joint Research
Vol. 9, Issue 7 | Pages 402 - 411
1 Aug 2020
Sanghani-Kerai A Coathup M Brown R Lodge G Osagie-Clouard L Graney I Skinner J Gikas P Blunn G

Aims

For cementless implants, stability is initially attained by an interference fit into the bone and osteo-integration may be encouraged by coating the implant with bioactive substances. Blood based autologous glue provides an easy, cost-effective way of obtaining high concentrations of growth factors for tissue healing and regeneration with the intention of spraying it onto the implant surface during surgery. The aim of this study was to incorporate nucleated cells from autologous bone marrow (BM) aspirate into gels made from the patient’s own blood, and to investigate the effects of incorporating three different concentrations of platelet rich plasma (PRP) on the proliferation and viability of the cells in the gel.

Methods

The autologous blood glue (ABG) that constituted 1.25, 2.5, and 5 times concentration PRP were made with and without equal volumes of BM nucleated cells. Proliferation, morphology, and viability of the cells in the glue was measured at days 7 and 14 and compared to cells seeded in fibrin glue.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 38 - 38
1 Apr 2017
Ray S El Khassawna T Thormann U Sommer U Rhonke M Henns A Gelinsky M Hanke T Schnettler R Heiss C Alt V
Full Access

Objectives

Osteoporosis and osteomalacia lead to increased fracture risk. Previous studies documented dysregulated osteoblast and osteoclast activity, leading to a high-turnover phenotype, reduced bone mass and low bone mineral content. Osteocytes, the most abundant bone cell type, are involved in bone metabolism by enabling cell to cell interaction. Osteocytes presence and viability are crucial for bone tissue homeostasis and mechanical integrity. Osseo-integration and implant degradation are the main problems in developing biomaterials for systemically diseased bone. This study examines osteocyte localisation, morphology and on the implant surface and at the implant bone interface. Furthermore, the study investigates ECM proteins regulation correlated to osteocytes and mechanical competence in an ovariectomised rat model with a critical size metaphyseal defect.

Methodology

After induction of osteoporosis, 60 female Sprague-Dawley rats were randomised into five groups: SrCPC (n=15), CPC (n=15), ScB30 (n=15), ScB30Sr20 (n=15) and empty defect (n=15). The left femur of all animals underwent a 4mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with the above mentioned implants or left empty. After six weeks, histomorphometric analysis showed a statistically significant increase in bone formation at the tissue-implant interface in the SrCPC group compared to the other groups (p<0.01). Osteocyte morphology and networks were detected using silver and staining. ECM proteins were investigated through immunohistochemistry. Cellular populations were tested using enzyme histochemistry. Mineralisation was assessed using time of flight secondary ion mass spectrometry (TOF-SIMS). Statistical analysis was performed using Mann Whitney U test with Bonferroni correction.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 43 - 43
1 Jan 2016
Berahmani S Janssen D Wolfson D De Waal Malefijt M Verdonschot N
Full Access

A durable biological fixation between implant and bone depends largely on the micro-motions [Pilliar et al., 1986]. Finite element analysis (FEA) is a numerical tool to calculate micro-motions during physiological loading. However, micromotions can be simulated and calculated in various ways. Generally, only a single peak force of an activity is applied, but it is also possible to apply discretized loads occurring during a continuous activity, offering the opportunity to analyze incremental micro-motions as well. Moreover, micro-motions are affected by the initial press-fit. We therefore aimed to evaluate the effect of different loading conditions and calculation methods on the micro-motions of an uncemented femoral knee component, while varying the interference-fit.

We created an FE model of a distal femur based on calibrated CT-scans. A Sigma® Cruciate-Retaining Porocoat® (DePuy Synthes, Leeds, UK) was placed following the surgical instructions. A range of interference-fits (0–100 µm) was applied, while other contact parameters were kept unchanged. Micro-motions were calculated by tracking the projection of implant nodes onto the bone surface. We defined three different micro-motions measures: micro-motions between consecutive increments of a full loading cycle (incremental), micro-motions for each increment relative to the initial position (reference), and the largest distance between projected displacements, occurring during a discretized full cycle (resulting) (Fig. 1A). Four consecutive cycles of normal gait and squat movements were applied, in different configurations. In the first configuration, incremental tibiofemoral and patellofemoral contact forces were applied, which were derived from Orthoload database using inverse dynamics [Fitzpatrick et al., 2012]. Secondly, we applied the same loads without the patellofemoral force, which is often used in experimental set-ups. Finally, only the peak tibiofemoral force was applied, as a single loading instance. We calculated the average of micro-motions of all nodes per increment to compare different calculation techniques. The percentage of area with resulting micro-motions less than 5 µm was also calculated.

The percentage of surface area was increased non-linearly when the interference fit changed from 0 to 100 µm particularly for squat movement. Tracking nodes over multiple cycles showed implant migration with interference-fits lower than 30µm (Fig. 1A). Loading configurations without the patellofemoral force, and with only the peak tibiofemoral force slightly overestimated and underestimated the resulting micro-motions of squat movement, respectively; although, the effect was less obvious for the gait simulation when no patella force was applied. Both incremental and reference micro-motions underestimated the resulting micro-motions (Fig. 1B). Interestingly, the reference micro-motions followed the pattern of the tibiofemoral contact force (Fig. 1B).

The calculation technique has a substantial effect on the micro-motions, which means there is a room for interpretation of micro-motions analyses. This furthermore stresses the importance of validation of the predicted micro-motions against experimental set-ups. In addition, the minor effect of loading configurations indicates that a simplified loading condition using only the peak tibiofemoral force is suitable for experimental studies. From a clinical perspective, the migration pattern of femoral components implanted with a low interference fit stresses the role of an adequate surgical technique, to obtain a good initial stability.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 67 - 67
1 May 2012
Johnson-Lynn SE McCaskie A Birch MA
Full Access

Aim

To control the growth and function of osteoblasts on Titanium alloy surfaces produced by electrochemical patterning.

Methods

Samples of Ti6Al4V were prepared with three different finishes; no surface preparation following machining, polishing on a grinding wheel with sequential grit papers up to 4000 to achieve a mirror finish and treatment in a flat electrochemical cell with a 3M sulphuric acid in methanol using 9V supplied over 60 seconds to produce a surface with defined nano/microscale roughness. Glass coverslips were used as control surfaces. Surfaces were seeded with primary rat calvarial osteoblasts and incubated in Dulbecco's Modified Eagle Medium with 10% (v/v) sera for 24 hours before fixing and performing immunofluorescence staining with anti-vinculin antibody. Photomicrographs of the surfaces were analysed with Image J and analySIS FIVE programs. Results for cell number, cell area, focal adhesion area and polarity (lack of roundness) were analysed (using the Mann Whitney test) for ANOVA using SPSS.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 163 - 163
1 Sep 2012
Smith J Sengers B Aarvold A Tayton E Dunlop D Oreffo R
Full Access

Recently, the osteoregenerative properties of allograft have been enhanced by addition of autogenous skeletal stem cells to treat orthopaedic conditions characterised by lost bone stock. There are multiple disadvantages to allograft, and trabecular tantalum represents a potential alternative. This metal is widely used, although in applications where there is poor initial stability, or when it is used in conjunction with bone grafting, loading may need to be limited until sound integration has occurred. Strategies to speed up implant incorporation to surrounding bone are therefore required. This may improve patient outcomes, extending the clinical applications of tantalum as a substitute for allograft.

Aim

To use tissue engineering strategies to enhance the reconstructive properties of tantalum, as an alternative to allograft.

Methods

Human bone marrow stromal cells (5×105 cells/ml) were cultured on blocks of trabecular tantalum or allograft for 28 days in basal and osteogenic media. Molecular profiling, confocal and scanning electron microscopy, as well as live/dead staining and biochemical assays were used to detail cell adherence, proliferation and phenotype.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 24
1 Mar 2002
Ramaniraka N Rakotomanana L Rubin P Leyvraz P
Full Access

Purpose of the study: After total hip replacement, the initial stability of the cementless femoral stem is a prerequisite for ensuring bone ingrowth and therefore long term fixation of the stem. For custom made implants, long term success of the replacement has been associated with reconstruction of the offset, antero/retro version of the neck orientation and its varus/valgus orientation angle. The goals of this study were to analyze the effects of the extra-medullary parameters on the stability of a noncemented stem after a total hip replacement, and to evaluate the change of stress transfer.

Material and methods: The geometry of a femur was reconstructed from CT-scanner data to obtain a three-dimensional model with distribution of bone density. The intra-medullary shape of the stem was based on the CT-scanner. Seven extra-medullary stem designs were compared: 1) Anatomical case based on the reconstruction of the femoral head position from the CT data; 2) Retroverted case of − 15° with respect to the anatomical reconstruction; 3) Anteverted case with an excessive anteversion angle of + 15° with respect to the anatomical case; 4) Medial case: shortened femoral neck length (− 10 mm) inducing a medial shift of the femoral head offset; 5) Lateral case: elongated femoral neck length (+ 10 mm) inducing lateral shift of the femoral head offset 6) Varus case with CCD angle 127°; 7) Valgus case with CCD angle 143°. The plasma sprayed stem surface was modeled with a frictional contact between bone and implant (friction coefficient: 0.6). The loading condition corresponding to the single limb stance phase during the gait cycle was used for all cases. Applied loads included major muscular forces (gluteus maximus, gluteus medius, psoas).

Results: Micromotions (debonding and slipping) of the stems relative to the femur and interfacial stresses (pressure and friction) were different according to the extra-medullary parameters. However, the locations of peak stresses and micromotions were not modified. The highest micromotions and stresses corresponded to the lateral situation and to the anteverted case (micro-slipping and pressure were increased up to 35 p.100). High peak pressure was observed for all designs, ranging from anatomical case (34 MPa) to anteverted case (44 MPa). The peak stresses and micromotions were minimal for the anatomical case. The maximal micro-debonding was not significantly modified by the extra-medullary design of the femoral stem.

Discussion: The extra-medullary stem design has been shown to affect the primary stability of implant and the stress transfer after THR. Most interfacial regions present small micro-slipping which normally allows the occurrence of bone ingrowth. The anatomical design presents the lowest micromotions and the lowest interfacial stresses. The worst cases correspond to the anteverted and lateralized cases. Probably, the anteverted situation involves higher torsion torque, which in turn may induce high torsion shear micro-motions and higher stress at the interface. Moreover, the lever arm of the weight bearing force on the femoral head is augmented for the augmented neck length situation. This increases the bending moment, and therefore may increase the stresses as well as the stem shear micromotions. In summary, the present results could be taken as biomechanical arguments for the requirement of anatomical reconstruction of not only the intra-medullary shape but also the extra-medullary parameters (reconstruction of the normal hip biomechanics).