header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

SEALING THE ACETABULAR BONE-IMPLANT INTERFACE AGAINST WEAR PARTICLE MIGRATION



Abstract

Introduction: The main problem facing the longevity of total hip replacements (THR) is wear particle induced osteolysis, particularly around the acetabular component. The articulating surfaces produce wear particles that migrate in the fibrous tissue membrane along the acetabular implant-bone interface causing osteolysis and subsequent implant loosening. The hypothesis that we investigated was that uncemented acetabular interfaces are more effective than cemented implants at resisting progressive osteolysis through bone attachment and the formation of a biological seal.

Methods: THR surgery was performed in an ovine model. Implants remained in vivo for 1 year. Femoral heads were roughened in order to generate wear debris and aseptic loosening of the acetabular component. Sheep were randomly assigned to one of three experimental groups: cemented polyethylene, grit blasted or plasma sprayed porous acetabular components with a polyethylene insert. Ground Reaction Force (GRF) data was collected pre-op and at 12, 24, 36 and 52 weeks post op. Retrieved specimens were analysed radiographically, histologically and using Scanning Electron Microscopy (SEM). A mould was made of the polyethylene liner and head penetration rates quantified using a shadowgraph technique. Thin sections through the acetabuli were prepared and image analysis used to quantify fibrous tissue (FT) thickness at the bone-implant interface. Mann-Whitney U tests were used for comparative statistical analysis where p< 0.05 were classified as significant.

Results: GRF demonstrated functional hips. A gradual increase was seen until week 36 followed by a decrease until retrieval suggesting the onset of aseptic loosening. 42.86% of control, 60% of grit blasted and 50% of porous coated components were deemed radiographically loose. Mean linear penetration rates demonstrated significantly less penetration within the porous cups (p=0.003, control and p=0.036, grit blasted). SEM established that wear particles generated were < 1μm in size. Light microscopy of thin sections revealed the common mechanism of loosening involving a resorption wedge at the interface with progressive bone loss. In all cases, the FT layer was greatest at the rim of the cup and gradually decreased towards the apex. The grit blasted group had the thickest FT layer adjacent to the cup. Under polarised light, wear debris was seen packed within macrophages in all sections.

Discussion: GRF data demonstrated grit blasted cups to have least function. This was confirmed through histology as they had the thickest FT layer surrounding the acetabular shell suggesting increased aseptic loosening of its component due to wear particles being able to access the interface more easily. Data corroborates radiographic results. In conclusion, porous and control cups performed better than grit blasted cups. Acknowledgments: EPSRC.

Correspondence should be addressed to Mr Carlos Wigderowitz, Honorary Secretary BORS, University Dept of Orthopaedic & Trauma Surgery, Ninewells Hospital & Medical School, Dundee DD1 9SY.