Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors. Cite this article:
Objectives. This study aimed to evaluate the histological and mechanical features of
Purpose: We hypothesised that the rate of
Objectives. Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries. Methods. We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve
Tendons mainly consist of collagen in order to withstand high tensile forces. Compared to other, high turnover tissues, cellularity and vascularity in tendons are low. Thus, the natural healing process of tendons takes long and can be problematic. In case of injury to the enthesis, the special transition from tendon over cartilage to bone is replaced by a fibrous scar tissue, which remains an unsolved problem in rotator cuff repair. To improve
Tendon injuries present a major clinical challenge, as they necessitate surgical intervention and are prone to fibrotic progression. Despite advances in physical therapy and surgical technique, tendons fail to return to full native functioning, underlining the need for a biological therapeutic to improve
Tendons are characterised by an inferior healing capacity when compared to other tissues, ultimately resulting in the formation of a pathologically altered extracellular matrix structure. Although our understanding of the underlying causes for the development and progression of tendinopathies remains incomplete, mounting evidence indicates a coordinated interplay between tendon-resident cells and the ECM is critical. Our recent results demonstrate that the matricellular protein SPARC (Secreted protein acidic and rich in cysteine) is essential for regulating tendon tissue homeostasis and maturation by modulating the tissue mechanical properties and aiding in collagen fibrillogenesis [1,2]. Consequently, we speculate that SPARC may also be relevant for
Approximately 30% of general practice consultations for musculoskeletal pain are related to tendon disorders, causing substantial personal suffering and enormous related healthcare costs. Treatments are often prone to long rehabilitation times, incomplete functional recovery, and secondary complications following surgical repair. Overall, due to their hypocellular and hypovascular nature, the regenerative capacity of tendons is very poor and intrinsically a disorganized scar tissue with inferior biomechanical properties forms after injury. Therefore, advanced therapeutic modalities need to be developed to enable functional tissue regeneration within a degenerative environment, moving beyond pure mechanical repair and overcoming the natural biological limits of
To analyse the efficacy and safety of cellular therapy utilizing Mesenchymal Stromal Cells (MSCs) in the management of rotator cuff(RC) tears from clinical studies available in the literature. We conducted independent and duplicate electronic database searches including PubMed, Embase, Web of Science, and Cochrane Library on August 2021 for studies analyzing the efficacy and safety of cellular therapy (CT) utilizing MSCs in the management of RC tears. VAS for pain, ASES Score, DASH Score, Constant Score, radiological assessment of healing and complications and adverse events were the outcomes analyzed. Analysis was performed in R-platform using OpenMeta [Analyst] software. RESULTS:. 6 studies involving 238 patients were included for analysis. We noted a significant reduction in VAS score for pain at 3 months (WMD=-2.234,p<0.001) and 6 months (WMD=-3.078,p<0.001) with the use of CT. Concerning functional outcomes, utilization of CT produced a significant short-term improvement in the ASES score (WMD=17.090,p<0.001) and significant benefit in functional scores such as Constant score (WMD=0.833,p=0.760) at long-term. Moreover, we also observed a significantly improved radiological
Chronic Achilles tendinopathy is characterised by sub-acute inflammation with pro-inflammatory type 1 macrophages (M1), tissue degeneration and consequent partial or total tendon injury. Control of the inflammatory response and M1-to-M2 macrophage polarisation can favour
Aims. In the context of tendon degenerative disorders, the need for innovative conservative treatments that can improve the intrinsic healing potential of tendon tissue is progressively increasing. In this study, the role of pulsed electromagnetic fields (PEMFs) in improving the
Introduction. It is an example of tendon to bone healing of rotator cuff tears. Low Level Laser Therapy (LLLT) is used in pain literature, pain palliation, tendinopathies, osteoarthritis treatment, implant osteointegration in jaw surgery, wound
Partial thickness abductor tendon tears are a significant source of recalcitrant laterally based hip pain. For those that fail conservative treatment, the results of endoscopic repair are highly successful with minimal morbidity. The principal burden is the protracted rehabilitation that is necessary as part of the recovery process. There is a wide gap between failed conservative treatment and successful surgical repair. It is hypothesized that a non-repair surgical strategy, such as a bioinducitve patch, could significantly reduce the burden associated recovery from a formal repair. Thus, the purpose of this study is to report the preliminary results of this treatment strategy. Symptomatic partial thickness abductor tendon tears are treated conservatively, including activity modification, supervised physical therapy and ultrasound guided corticosteroid injections. Beginning in January 2022, patients undergoing hip arthroscopy for intraarticular pathology who also had persistently symptomatic partial thickness abductor tendon tears, were treated with adjunct placement of a bioinducitve (Regeneten) patch over the tendon lesion from the peritrochanteric space. The postop rehab protocol is dictated by the intraarticular procedure performed. All patients are prospectively assessed with a modified Harris Hip Score (mHHS) and iHOT and the
Introduction. Distal triceps tendon rupture is related to high complication rates with up to 25% failures. Elbow stiffness is another severe complication, as the traditional approach considers prolonged immobilization to ensure
Digital Ventilated Cages (DVC) offer an innovative technology to obtain accurate movement data from a single mouse over time [1]. Thus, they could be used to determine the occurrence of a tendon damage event as well as inform on tissue regeneration [2,3]. Therefore, using the mouse model of tendon experimental damage, in this study it has been tested whether the recovery of tissue microarchitecture and of extracellular matrix (ECM) correlates with the motion data collected through this technology. Mice models were used to induce acute injury in Achilles tendons (ATs), while healthy ones were used as control. During the healing process, the mice were housed in DVC cages (Tecniplast) to monitor animal welfare and to study biomechanics assessing movement activity, an indicator of the recovery of tendon tissue functionality. After 28 days, the AT were harvested and assessed for their histological and immunohistochemical properties to obtain a total histological score (TSH) that was then correlated to the movement data. DVC cages showed the capacity to distinguish activity patterns in groups from the two different conditions. The data collected showed that the mice with access to the mouse wheel had a higher activity as compared to the blocked wheel group, which suggests that the extra movement during
Early identification of patients at risk for impaired
During aging, tendons demonstrate substantial disruptions in homeostasis, leading to impairments in structure-function. Impaired tendon function contributes to substantial declines quality of life during aging. Aged tendons are more likely to undergo spontaneous rupture, and the healing response following injury is impaired in aged tendons. Thus, there is a need to develop strategies to maintain tendon homeostasis and healing capacity through the lifespan. Tendon cell density sharply declines by ∼12 months of age in mice, and this low cell density is retained in geriatric tendons. Our data suggests that this decline in cellularity initiates a degenerative cascade due to insufficient production of the extracellular matrix (ECM) components needed to maintain tendon homeostasis. Thus, preventing this decline in tendon cellularity has great potential for maintaining tendon health. Single cell RNA sequencing analysis identifies two changes in the aged tendon cell environment. First, aged tendons primarily lose tenocytes that are associated with ECM biosynthesis functions. Second, the tenocytes that remain in aged tendons have disruptions in proteostasis and an increased pro-inflammatory phenotype, with these changes collectively termed ‘programmatic skewing'. To determine which of these changes drives homeostatic disruption, we developed a model of tenocyte depletion in young animals. This model decreases tendon cellularity to that of an aged tendon, including decreased biosynthetic tenocyte function, while age-related programmatic skewing is absent. Loss of biosynthetic tenocyte function in young tendons was sufficient to induce homeostatic disruption comparable to natural aging, including deficits in ECM organization, composition, and material quality, suggesting loss biosynthetic tenocytes as an initiator of tendon degeneration. In contrast, our data suggest that programmatic skewing underpins impaired healing in aged tendons. Indeed, despite similar declines in the tenocyte environment, middle-aged and young-depleted tendons mount a physiological healing response characterized by robust ECM synthesis and remodeling, while aged
Depletion of Scleraxis-lineage (ScxLin) cells in adult tendon recapitulates age-related decrements in cell density, ECM organization and composition. However, depletion of ScxLin cells improves
Tendinopathy is a tendon pathology often resulting from a failed healing response to tendon injury. Activated protein C (APC) is a natural anti-coagulant with anti-inflammatory and wound healing promoting functions, which are mainly mediated by its receptors, endothelial protein C receptor (EPCR) and protease activated receptors (PARs). This study aimed to determine whether APC stimulates tenocyte healing and if so, to assess the involvement of the receptors. Mouse-tail tenocytes were isolated from 3-week-old wild type (WT), PAR- 1 knockout (KO) and PAR-2 KO mice. The expression of EPCR, PAR-1 and −2 and the effect of APC on tenocytes
Adipose-derived stem cells (ADSCs) are an effective alternative for Teno-regeneration. Despite their applications in tendon engineering, the mechanisms promoting