Revision total hip arthroplasty (THA) is a challenging scenario following complex primary THA for developmental dysplasia of hip (DDH). Our study envisages the long-term outcomes of revision DDH and the role of lateral structural support in socket fixation in these young patients who may require multiple revisions in their life-time. Hundred and eighteen consecutive cemented revision THAs with minimum follow up of 5 years following primary diagnosis of DDH operated between January 1974 and December 2012 were analysed for their clinical and radiological outcomes. The mean follow-up of 118 patients was 11.0 years (5.1–39.6 years). The Kaplan Mier survivorship at 11 years with end point as revision for any reason was 89.8% (CI 81.1–98.4). Of 118 revisions, 88 acetabular revisions were for aseptic loosening. Out of the acetabular revisions, 21 had pre-existing structural bone grafts from primary surgery, of which only 3 needed structural re-grafting during revision. Amongst the remaining 18 hips, the lateral support from the previous graft facilitated revision with no requirement of additional
Background. Revision total hip arthroplasty (THA) is a challenging scenario following complex primary THA for developmental dysplasia of hip (DDH). This study envisages the long-term outcomes of revision DDH and the role of lateral structural support in socket fixation in these young patients who may require multiple revisions in their life-time. Materials and methods. Hundred and eighteen consecutive cemented revision THAs with minimum follow up of 5 years following primary diagnosis of DDH operated by a single unit between January 1974 and December 2012 were analysed for their clinical and radiological outcomes. Results. The mean follow-up of 118 patients was 11.0 years (5.1–39.6 years). At 11 years, the cumulative survivorship with revision as the endpoint was 89.8%. Amongst the 88 acetabular revisions for aseptic loosening, 21 had pre-existing autologous lateral structural bone graft from the primary THA (group A). Only 3 (14%) of them required lateral structural re-grafting using allograft at revision. With the remaining 18 hips, the lateral support from the previous graft facilitated revision with no requirement of additional
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either
The major causes of revision total knee are associated with some degree of bone loss. The missing bone must be accounted for to insure success of the revision procedure, to achieve flexion extension balance, restore the joint line to within a centimeter of its previous level, and to assure a proper sizing especially the anteroposterior diameter of the femoral component. In recent years, clinical practice has evolved over time with a general move away from a
Aims: to evaluated the radiological evolution of autologous bone graft in acetabular structural and cavitary defects in primary total hip artrhoplasty using an expansion cup (CLS, Sulzer Orthopaedics). Methods: we reviewed, retrospectively, 19 patients (9 males, 10 females, average age 64,7 years) treated in our Unit from January 1994 through July 2000 with acetabular bone grafting. According to the AAOS classiþcation, 11 patients showed a segmental acetabular deþciency requiring a
Introduction: Various techniques have been described for cup position in deficient acetabuli. Medialization allows an optimal cup position in the true acetabulum affording cover of the implant in the superolateral area by the bony roof and avoiding the need for a
Porous-coated acetabular hemispherical components have proven successful in all but the most severe revision acetabular defects. A revision jumbo porous coated component has been defined as a cup with minimum diameter of 66mm in men and 62mm in women. In published studies this size cup is used in 14–39% of acetabular revisions. The advantages of this technique are ease of use, most deficiencies can be treated without
Porous-coated acetabular hemispherical components have proven successful in all but the most severe revision acetabular defects. A revision jumbo porous coated component has been defined as cup with minimum diameter of 66 mm in men and 62 mm in women. In published studies this size cup is used in 14–39% of acetabular revisions. The advantages of this technique are ease of use, most deficiencies can be treated without
INTRODUCTION. Porous metal bone fillers are frequently used to manage bony defects encountered in revision total knee arthroplasty (rTKA). Compared to
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either
Porous-coated acetabular hemispherical components have proven successful in all but the most severe revision acetabular defects. A revision jumbo porous coated component has been defined as a cup with minimum diameter of 66 mm in men and 62 mm in women. In published studies this size cup is used in 14% – 39% of acetabular revisions. The advantages of this technique are ease of use, most deficiencies can be treated without
Impaction grafting is an excellent option for acetabular revision. It is technique specific and very popular in England and the Netherlands and to some degree in other European centers. The long term published results are excellent. It is, however, technique dependent and the best results are for contained cavitary defects. If the defect is segmental and can be contained by a single mesh and impaction grafting, the results are still quite good. If, however, there is a larger segmental defect of greater than 50% of the acetabulum or a pelvic discontinuity, other options should be considered. Segmental defects of 25–50% can be managed by minor column (shelf) or figure of 7 structural allografts with good long term results. Porous metal augments are now a good option with promising early to mid-term results. Segmental defects of greater than 50% require a
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either
Important issues related to total hip replacement for dysplasia are: placement of the cup and bone stock; the role of femoral osteotomy, and the choice of acetabular and femoral components. The cup can be placed at the correct or near correct anatomical level with or without a bone graft, in a high position (high hip center) or at the right level in a protruded position. All three techniques can provide adequate coverage of the cup. In the high hip position bone graft is not usually necessary to obtain cup coverage. There is however a higher rate of component loosening, a higher dislocation rate, and lengthening is limited to the femoral side. Placing the cup in a protruded position to obtain coverage does not restore bone stock for future surgery, but it does place the hip at the correct level. Placing the cup in the correct anatomical position (i.e. at the right level and not protruded) may require a structural autograft which adds to the complexity of the case. However, bone stock is restored for future surgery. In a radiographic study of 31 shelf grafts with an average follow-up of 14 years, 22 grafts had mild resorption, and 9 moderate resorption. Ten patients required cup revision, 2 at 9 years, 2 at 10 to 15 years, and 6 at over 15 years. Only 2 hips required another
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either
Post-traumatic periprosthetic acetabular fractures are rare but serious. Few studies carried out on small cohorts have reported them in the literature. The aim of this work is to describe the specific characteristics of post-traumatic periprosthetic acetabular fractures, and the outcome of their surgical treatment in terms of function and complications. Patients with this type of fracture were identified retrospectively over a period of six years (January 2016 to December 2021). The following data were collected: demographic characteristics, date of insertion of the prosthesis, details of the intervention, date of the trauma, characteristics of the fracture, and type of treatment. Functional results were assessed with the Harris Hip Score (HHS). Data concerning complications of treatment were collected.Aims
Methods
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either
The goals of revision arthroplasty of the hip are to restore the anatomy and achieve stable fixation for new acetabular and femoral components. It is important to restore bone stock, thereby creating an environment for stable fixation for the new components. The bone defects encountered in revision arthroplasty of the hip can be classified either as contained (cavitary) or uncontained (segmental). Contained defects on both the acetabular and femoral sides can be addressed by morselised bone graft that is compacted into the defect. Severe uncontained defects are more of a problem particularly on the acetabular side where bypass fixation such as distal fixation on the femoral side is not really an alternative. Most authors agree that the use of morselised allograft bone for contained defects is the treatment of choice as long as stable fixation of the acetabular component can be achieved and there is a reasonable amount of contact with bleeding host bone for eventual ingrowth and stabilisation of the cup. On the femoral side, contained defects can be addressed with impaction grafting for very young patients or bypass fixation in the diaphysis of the femur using more extensively coated femoral components or taper devices. Segmental defects on the acetabular side have been addressed with structural allografts for the past 15 to 20 years. These are indicated in younger individuals with Type 3A defects.
Purpose: Pelvic discontinuity associated with bone loss is a complex challenge in acetabular revision surgery. Reconstruction with anti protrusion cages, Trabecular Metal (Zimmer, Warsaw, Indiana) cups and morselized bone (Cup-Cage) constructs is a relatively new technique used by the authors for the past 6 years. The purpose of the study was to examine the clinical outcome of these patients. Method: Thirty-two consecutive acetabular revision reconstructions in 30 patients with pelvic discontinuity and bone loss treated by cup cage technique between January 2003 and September 2007 were reviewed. Average clinical and radiological follow up was 38.5 ± 19 months (range 12 – 68, median 34.5). Failure was defined as component migration >
5mm. Results: In 29 (90.6%) patients there was no clinical or radiographic evidence indicative of loosening at latest follow up. Harris Hip Scores improved significantly (p<
0.001) from 46.6 ± 10.4 to 78.7 ± 10.4 at 2 year follow up. In 3 patients the construct migrated at 1 year post surgery. One construct was revised to anti protrusion cage with a
The uncemented cup with iliac stem ensures immediate primary stability by fixation to the hipbone in acetabular loosening with severe bone defect. Homologous bone grafts contribute to restoring bone stock, which is a fundamental requirement for long lasting implant stability. From 2002 to 2004 we implanted 23 cups with iliac stems in 22 patients. In 7 cases there was also stem loosening, and so total hip arthroplasty was performed. In 2 patients the defect was grade 2b, in 5 grade 3a, and in 16 grade 3b according to Paprosky. A direct lateral approach was performed in the supine position. Morselized bone grafts were used in all cases by the “impaction grafting” technique, and in 4 cases modelled