Polyethylene wear debris in TKA arises from several sources, including the tibiofemoral articulation and the interface between the backside surface of the tibial insert and the metal tibial tray. In this study we identify a new source of abrasive damage to the polyethylene bearing surface: impingement of resected bony surfaces, osteophytes and overhanging acrylic cement on the tibial bearing surface during joint motion. One hundred forty-eight tibial components of 24 different designs in a retrieval collection were examined. A digital image of the articular surface of each insert was recorded. The presence, location and projected area of abrasive wear to the non-articulating edges of the insert were assessed using image analysis software. Significant abrasive wear was observed in 24% of the retrievals with cemented femoral components and 9% from non-cemented components. Of the retrievals exhibiting this abrasive wear mode, 46% experienced multiple site damage. The average damage area for each individual abrasive scar was 78±11mm^2. Within the group of worn inserts, the abrasive scars were seen with a frequency of 69% on the extreme medial edge, 19% on the extreme lateral edge, 38% on the posterior-medial edge and 23% on the posterior-lateral edge. In posterior stabilized components with an open femoral box design, scarring of the superior surface of the tibial post was also observed. This proposed mode of damage was confirmed with several retrieved femoral components containing either fixed cement protruding from the posterior condyles, from the medial and lateral edges or osteophytes embedded in the posterior capsule. The corresponding inserts exhibited significant abrasive scarring at those locations. We have observed a previously unrecognized source of polyethylene damage resulting in gouging, abrasion and severe localized damage in cemented and uncemented total knee replacement. Clearly, acrylic cement, in bulk or particulate form, often contributes to severe damage of the tibial surface and improvements to instruments and techniques for cementing are needed to prevent this wear mechanism.
Artificial hip joints have been in use for a number of years; various combinations of metals and polymers have been tested both in vitro and in vivo. Modern ceramics have found application as bearings in hip replacement due to the enhanced wear and friction that they offer. It has been hypothesised that during the swing phase of gait it is possible for the Femoral head and the Acetabular cup to dislocate, before relocating during heel contact. Severe loading such as this could cause greater levels of wear to occur in artificial hip joints. This study provides comparative analysis between ceramic-on-ceramic hip joint pairings under both severe and standard loading profiles. Five zirconia-toughened alumina (ZTA) 28mm diameter bearing pairs were tested on a ProSim Hip Simulator for 5.3 million cycles (MC), two under severe loading and three under standard loading conditions. Additionally a Loaded Soak Control, Soak Control and Environmental Control were used. Wear was recorded every 0.5 MC by gravimetric measurement. Surface microscopy images from a Zygo New View 100 and an Atomic Force Microscope (AFM) were taken before testing and then at, 0.5 MC. 2.5 MC, and 5.3 MC. The standard loading profile followed . ISO14242. -1 standard with 2650±50N maximum force, ±10° internal-external rotation and −15–30° flexion-extension. To simulate aggressive wear condition, microseparation inferiorly and micro-lateralisation laterally were applied during the swing phase. Dual acting cylinders were used to apply a constant force of 350±50N in opposition to the standard loading profile to enable separation between the Femoral Head and the Acetabular Cup during the swing phase. This microseparation was measured by means of a Linear Variable Differential Transformer (LVDT) and the setting gave a reading of 1.2mm ± 0.1mm at the start of each 0.5 million run. The value for microlateralisation was 0.9mm whilst the inferior separation was 1.2mm. Wear rates for the ceramic cups under
INTRODUCTION. Implant wear testing is traditionally undertaken using standardized inputs set out by ISO or ASTM. These inputs are based on a single individual performing a single activity with a specific implant. Standardization helps ensure that implants are tested to a known set of parameters from which comparisons may be drawn but it has limitations as patients perform varied activities, with different implant sizes and designs that produce different kinematics/kinetics. In this study, wear performance has been evaluated using gait implant specific loading/kinematics and comparing to a combination deep knee bend (DKB), step down (SD) and gait implant specific loading on cruciate retaining (CR) rotating platform (RP) total knee replacements (TKR). This combination activity profile better replicates patient activities of daily living (ADL). METHODS. Two sets of three ATTUNE. ®. size 5 right leg CR RP TKRs (DePuy Synthes, Warsaw, IN) were used in a study to evaluate ADL implant wear. Implant specific loading profiles were produced via a validated finite element lower limb model [1] that uses activity data such as gait (K1L_110108_1_86p), SD (K1L_240309_2_144p), and DKB (K9P_2239_0_9_I1) from the Orthoload database [2] to produce external boundary conditions. Each set of components were tested using a VIVO joint simulator (AMTI, Watertown, MA, Figure 1) for a total of 4.5 million cycles (Mcyc). All cycles were conducted at 0.8Hz in force-control with flexion driven in displacement control. Bovine calf serum lubricant was prepared to a total protein concentration of 18g/L and maintained at 37°±2°C. Wear of the tibial inserts was quantified via gravimetric methods per ISO14243–2:2009(E). Polyethylene tibial insert weights were taken prior to testing and every 0.5Mcyc there after which corresponded to serum exchange intervals. The multi-activity test intervals were split into10 loops of 1,250 DKB, 3,000 SD, and 45,750 gait cycles in series. Based on activity data presented by Wimmer et al. the number of cycles per activity and activities used is sufficient for a person that is considered active [3]. A loaded soak control was used to compensate for fluid absorption in wear rate calculations. Wear rates were calculated using linear regression. RESULTS SECTION. The wear rate for the gait-only activity test was calculated to be 0.20±0.04mg/Mcyc conversely the wear rate for the multi-activity test was 2.65±0.67mg/Mcyc (Figure 2). Wear scars can be found in Figure 3. Using a two-sided t-test of unequal variance, it was found that there was a significant difference between the two wear rates (p=0.004). DISCUSSION. Adding activities to the wear simulation test significantly increased the average wear rate of the test samples, confirming that changes in cross shear from different activities will tend to increase the wear of an implant. The results of this study prove that single activity wear testing may not be the most clinically
Posterior stabilized (PS) total knee arthroplasty (TKA), wherein mechanical engagement of the femoral cam and tibial post prevents abnormal anterior sliding of the knee, is a proven surgical technique. However, many patients complain about abnormal clicking sensation, and several reports of
Background. Distal femoral replacements (DFR) are used in children for limb-salvage procedures after bone tumor surgery. These are typically modular devices involving a hinged knee axle that has peripheral metal-on-polyethylene (MoP) and central metal-on-metal (M-M) articulations. While modular connections and M-M surfaces in hip devices have been extensively studied, little is known about long-term wear or corrosion mechanisms of DFRs. Retrieved axles were examined to identify common features and patterns of surface damage, wear and corrosion. Methods. The cobalt chromium alloy axle components from 13 retrieved DFRs were cleaned and examined by eye and with a stereo microscope up to 1000× magnification. Each axle was marked into 6 zones for visual inspection: the proximal and distal views, and the middle (M-M) and 2 peripheral (MoP) zones. The approximate percentage of the following features were recorded per zone: polishing, abrasion or scratching, gouges or detectable wear, impingement wear (i.e. from non- intentional articulation), discoloration and pitting. Results. In each case, the middle M-M zones showed more damage features compared with peripheral MoP zones. Brown discoloration, presumably due to tribofilm deposits, was the predominant M-M area feature, particularly at the junction between the MoP and M-M zones. Higher magnification showed areas of polishing underlying the discoloration, suggesting repetitive removal of the surface metal and re-deposition of tribofilms (Fig 2B). 9 cases demonstrated reflective patches resembling “thumbprint” or “fish scale” markings, which, under higher magnification, showed signs of scratching and grooving in a radial pattern (Figs 2D, 3A). Pits were occasionally present but appeared to be from third-body damage as signs of corrosion were absent. Features that resembled carbides, sometimes with associated “comet” patterns of scratching were apparent under higher magnification in some areas. The MoP zones showed variable scratching, abrasion and wear polishing. The MoP to M-M junctional areas were demarcated by a distinct band corresponding, in some cases, to a narrow wear groove or gouge. 3 axles showed evidence of
Aims: The goal was to determine if young patients respect the instructions for medical supervision control instructions after a total hip arthroplasty (THA). Methods:We performed 50 THA (Harris cups and ABG I stems) in 39 patients, mean age 38 years ± 11 (15–58). There were thirty-eight 28mm femoral heads (30 zirconia, 8 chromium-cobalt) and 12 chromium-cobalt heads in 22mm. Each patient was told how necessary a regular medical supervision was with the following schedule: controls at 2 months, 1 year then every two years. In 2000, all the patients were evaluated (no lost for follow-up). Wear was measured according to Livermore with a digitizer. Results: At 72 ± 14 months of follow-up (5–9 years), 51% of the patients (20/39) did not come back for the intermediate controls. No factor could be accounted for that, except being a male (p=0.04). Wear was rather severe (average 0.23 mm/year). 37% of the patients with a
Retrieved alumina-on-alumina hip joints frequently exhibit a localised region of high wear, commonly called ‘stripe wear’. This ‘stripe wear’ can be replicated in vitro by the introduction of micro-separation, where the joint contact shifts laterally reproducing edge loading during the simulated walking cycle. While the origin of stripe wear is clearly associated with the micro-scale impact resulting from micro-separation, the wear processes leading to its formation and the wear mechanisms elsewhere on the joint are not so well understood. The purpose of this study was to compare the surface microstructure of in vivo and in vitro alumina hip prostheses, and investigate the origins of the damage accumulation mechanisms that lead to prosthetic failure. The in vivo alumina hip prosthesis was Biolox (Ceram-Tec, AG, Plochingen, Gemany) implanted for 11 years [. 1. ]. The in vitro alumina hip prosthesis was Biolox-forte (CeramTec, AG, Plochingen, Gemany), which had been tested in a hip joint simulator under micro-separation at Leeds University using the procedures given in [2]. The worn surfaces of the alumina hip prostheses were investigated using a Scanning Electron Microscopy (SEM). Similar worn surfaces were seen for both in vivo and in vitro samples. Focused ion beam (FIB) microscopy was used to determine the sub-surface damage across the stripe wear. Samples were subsequently removed for Transmission Electron Microscopy (TEM). Sub-surface damage was found to be limited to a few μm beneath the surface; ~ 2μm for in vivo samples and ~1μm for in vitro samples. The transition from mild wear to more
Wear of the underside of modular tibial inserts (“backside wear”) has been reported by several authors. However, the actual volume of material lost through wear of the backside surface has not been quantified. This study reports the results of computerized measurements of tibial inserts of one design known to have a high incidence of backside wear in situ. A series of retrieved TKA components of one design (AMK, Depuy) with evidence of
Two big problems exist with the all polyethylene cemented tibial component; the polyethylene and the cement. The polyethylene is too weak and flexible to bear high tibial load, so it deforms and loosens. The interface stresses are too high when two flexible structures are poorly bonded and heavily loaded. Modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80's for versatility and to facilitate screw fixation for cementless implants. These designs allow exchange of various polyethylene thicknesses, and aids the addition of stems and wedges. Other advantages include the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. Several studies have documented the high failure rate of isolated polyethylene exchange procedures, because technical problems related to the original components are left uncorrected. However, revision for wear is the simplest revision ever!. Since the late 1980's the phenomena of polyethylene wear and osteolysis have been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and
Introduction. Titanium nitride (TiN) coatings are used in total hip arthroplasty to reduce friction of bearing couples or to decrease the allergic potential of orthopaedic alloys. Little is known about performance of currently manufactured implants, since only few retrieval studies were performed, furthermore they included a small number of implants manufactured over 15 years ago. Aim of study. To examine wear and degradation of retrieved TiN coated femoral heads articulating with ultra-high molecular weight polyethylene (UHMWPE). Methods. We included eight femoral heads with a made od TiAl6V4 alloy and coated with TiN using Physical Vapour Deposition (PVD). All heads (28 and 32 mm) were retrieved after at least 12 months of use (range 12–56). The reason for revision was aseptic loosening in 6 cases, septic loosening in one case and recurrent dislocations (five episodes) in one uncemented prosthesis. One unused head was included as reference sample. All implants were evaluated with light microscopy, Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS). 30 SEM images from each implant were digitally analysed using ImageJ software to compare damage in loaded and non weight-bearing parts of the heads. Results. Studies with light microscopy revealed severe damage to the dislocated femoral head, with multiple metallic scratches. SEM studies indicated presence of multiple scratches and pinholes with a diameter of 1–10 µm (Fig1a,b,). Residue from the manufacturing process was present in all implants in form of pure Ti droplets found in round voids. In all implants we found irregular areas (diam. 20–50 µm, Fig 1c,d) where the coating was delaminated from the substrate metal with cracks arising from coating defects (Fig1e-h). Some of these debonded fragments were embedded into the PVD layer in weight-bearing parts of all heads. In one head, which was subjected to dislocations we observed deposits of titanium alloy from the acetabular shell (Fig 2a,b). The deposits were accompanied by large patches of delaminated coating as well as multiple cracks (Fig 2c,d). Small fragments of the acetabular titanium alloy damaged the coating in third body mechanism. Surprisingly in three implants we EDS analysis revealed similar spheres (diam. 1–10 µm) containing Niobium (Nb), although this element is not a part of any of the components used in the implants(Fig 2e,f). Interestingly presence of Nb droplets were associated with a higher number of other defect in these heads both in weight-baring and non weight-bearing parts of the heads suggesting inferior coating quality in these cases (Fig 2 g,h; Fig3, cases H2,H5,H8). Conclusions. Compared to previous studies we did not observe
Introduction. Due to the predictability of outcomes achieved with reverse shoulder arthroplasty (rTSA), rTSA is increasingly being used in patients where glenoid fixation is compromised due to presence of glenoid wear. There are various methods to achieve glenoid fixation in patients with glenoid wear, including the use of bone grafting behind the glenoid baseplate or the use of augmented glenoid baseplates. This clinical study quantifies clinical outcomes achieved using both techniques in patients with
One of serious issues in total hip arthroplasty (THA) is the osteolysis which results in aseptic loosening caused by the wear particles from a polyethylene (PE) acetabular cup. In addition, oxidation degradation of PE cup resulting in the fracture or the
Multiaxial rotation of femoral component is generated in a wide range against UHMWPE tibial insert during ambulation or deep bending activities. Simultaneously, microscopic oscillation and twisting might accompany with such a wide-range motion. Such a combined in-vivo kinetics is expected to bring more
We removed 23 Charité artificial discs in 19 patients due to severe back-and legpain and performed an anterior as well posterior fusion. Mean interval between insertion and retrieval is 8,4 years (3,0–16,0 years). The mean age at retrieval is 49,4 years (40–72 years). The cause of persistent or recurrent pain was one or more of several problems thought to be related to the pain: subsidence, migration, wear with or without breakage of the metal marker ring, facetjoint or adjacent degeneration. In all cases wear of the polyethylene core was seen in major or minor degree. The wear was related to posterior impingement possibly due to hyperlordosis and extension instability and was subsequently more pronounced in the peripheral rim than in the central dome. Also a relationship was noted to in vivo oxidation of the polyethylene, especially in the rim. In the periprosthetic tissue an inflammatory reaction was found, more in the
Ceramic-on-ceramic bearing is an attractive alternative to metal-on-polyethylene bearing due to the unique tri-bological advantages of alumina. However, despite the long-term satisfactory results obtained so far in the vast majority of patients, failure may occur in a few cases. Clinical, radiographic, laboratory and microbiological data of 30 consecutive subjects with failed alumina-on-alumina total hip arthroplasties (THA) were analyzed to define if foreign body reaction to wear debris may be responsible for periprosthetic bone resorption, as in conventional metal-to-polyethylene bearings. In all cases, clinical and radiographical material was reviewed, retrieved implants were examined, and histology of periprosthetic tissues was analyzed. Massive osteolysis was never observed. Apart from 5 five patients for which revision surgery was necessary due to the occurrence of late infection, in all other cases failure had occurred due to secondary implant instability (as in the case of screwed sockets, 19 cases) or to malpositioning of the implant (5 cases). One patient suffered from chronic dislocation. In the vast majority of cases, ceramic wear debris was absent or scarce, and did not induce any tissue reaction. In a few cases with
Aims: The aim of this open prospective study was to evaluate the minimum 2-year follow-up outcome of a consecutive series of low friction total hip arthroplasties combining zirconia on polyethylene. Methods: Between January 1997 and June 1999 fifty-five total hip arthroplasties were performed in 51 patients. The mean age was 52.2 ± 12 years. The 22.2-mm femoral head made of zirconia ceramic was secured to the femoral component through a Morse taper that had an angle of 11°25 for 27 hips and 5°40 for 33 hips. All prostheses were of Charnley-Kerboull design. Clinical results were evaluated according to the Merle d’Aubigné hip score. Wear of the acetabular component and periprosthetic osteolysis was measured on serial radiographs of the pelvis. Results: The mean follow-up of the series was 32 months (24 to 48 months). No patient was lost to follow-up. The mean functional hip score significantly increased from 12.2 ± 2.6 preoperatively to 17.8 ± 0.2 at the latest follow-up (paired Student’s t test, p <
0.0001). None of the acetabular or femoral component had migrated. Wear of the socket was always undetectable on plain radiographs. However, lytic endosteal lesions of the calcar were observed in 19 of the 55 arthroplasties (34.5%). These lytic lesions appeared between the first and second postoperative year. Conclusions: Early calcar osteolysis observed in this study can be related to either run-in wear or to preliminary
According to the knee simulator test results in 1970s, the total decrease in thickness of UHMWPE tibial tray in combination with ceramic femoral component [F-Comp] was less than one tenth as that of the combination with metal [. 1. ]. These advantages led to development of total knee prosthesis [TKP] with alumina ceramics. In this study, we report the wear surface observation, the clinical wear and the oxidation of the retrieved TKP used clinically for 23 years, comparing with a metal TKP. The retrieved TKP was implanted in 1979, and retrieved on January 9th in 2002. This TKP consisted of an alumina ceramic F-Comp and a UHMWPE tray combined with a alumina ceramic tibial component. Observations of the surface of alumina F-Comp and UHMWPE tray were carried out using SEM. Shape of UHMWPE tray was determined three-dimensionally. Comparing the result with original shape based on the product’s plan, liner wear and volumetric wear were calculated. Oxidation index was determined by Fourier transform infrared spectrophotometry. Alumina F-Comp did not have any scratch on the surface by seeing with naked eye. UHMWPE tray had deformation and scratches obviously. The liner wear rate was 37 micrometer/year and volumetric wear rate was 18.8 mm3/year. The oxidation indexes were 0.6 in the unworn area, 1.2 in the worn area and 0.2 in the inner area. SEM observations of the F-Comp demonstrated no scratch or pit. In contrast, many scratches were clearly observed on the UHMWPE tray. However, higher magnification observations did not demonstrate
Purpose. In an effort to increase the durability of cemented total hip arthroplasties (THA), femoral stems were precoated using polymethlymethacrylate (PMMA). One such design is Harris precoat plus and centralign design (Zimmer, Warsaw, Indiana). The reports on these particular designs are variable, ranging from good survival to early failures, studied over short to medium term. Early failures have been attributed, most of the time to debonding at cement-bone interface. In view of lack of long term and variable results, we reviewed the results of primary hybrid THA performed during October 1990 to December 1995, using a PMMA coated, cemented femoral prosthesis and contemporary cementing techniques. Materials and Methods. 121 patients (136 hips) underwent primary THA using one of the precoated femoral stems during the study period. Thirty-five patients (36 hips) died and 23 patients (23 hips) were lost to follow-up due to some reasons. Two hips (2 patients) were revised for postoperative infection and hence, not included in study. Collectively, 75 hips (61 patients) were available for clinical and radiological reviews until the last follow-up, with an average follow-up period of 15.5 years (range, 14 to 18.3 years). The average age of the patients at the time of the index surgery was 53.6 years (range, 24 to 82 years). There were 43 males (55 hips) and 18 females (20 hips). Acetabular components used in these 75 hips were Harris Galante porous (HGP) cups in 69 hips and CLS Expansion cup (Protek, AG, Bern) in six hips. The mean age of 61 patients (75 hips) who were available for latest follow-up at December 2009, was 46 years (range, 22-65 years). Third generation cementing techniques and distal cement plug but no centralizer was used in all cases. All surgeries were performed by same surgeon at a single institute. Results. 23 femoral stems were revised, 20 for aseptic loosening (8 Precoat plus and 12 Centralign) and 3 for periprosthetic fracture with loosening (1 Precoat plus and 2 Centralign). The cementing of the femoral stem was grade A in 29 hips (39%), grade B in 16 (21%), C1 in 6 (8%) and grade C2 in 24 (32%). 21 of 24 hips which showed definitive loosening in radiogram had had cement grade C2 cementing. There were 22 acetabular revisions. 11 hips underwent isolated liner exchange for
Two big problems exist with the all-polyethylene cemented tibial component; the polyethylene and the cement. The polyethylene is too weak and flexible to bear high tibial load, so it deforms and loosens. The interface stresses are too high when two flexible structures are poorly bonded and heavily loaded. Modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80's for versatility and to facilitate screw fixation for cementless implants. These designs allow exchange of various polyethylene thicknesses, and aids the addition of stems and wedges. Other advantages include the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. Several studies have documented the high failure rate of isolated polyethylene exchange procedures, because technical problems related to the original components are left uncorrected. However, revision for wear is the simplest revision ever!. Since the late 1980's the phenomena of polyethylene wear and osteolysis has been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and
Testing wear durability of UHMWPE joint replacement bearings under abrasive conditions (mimicking in vivo conditions when metallic components become scratched from bone or cement debris) is useful in screening new bearing materials or alternative processing methods. Adding third body particle debris in testing brings the complications of minimal (if any) increase in wear with particles lodging into the plastic bearings potentially causing unknown errors for gravimetric wear measurements. Alternatively, testing those bearings against already scratched metallic components may provide a cleaner route without such complications. This requires a method to reproducibly create scratches resembling the damage seen on retrievals. This study introduces such a method, and investigates wear of UHMWPE bearings against metallic femoral hip components that have been intentionally scratched. In this technique, femoral hip heads were pressed and sunk into a bed of abrasive beads under a known load (712N, one body weight), and this created longitudinal scratches. Latitudinal scratches were generated by rotating the sunken femoral heads ± 90° about their polar axis while under the same load. This process (pressing into the abrasive beads and then turning ± 90°) was repeated 10 times on each femoral component which resulted in thousands of random scratch patterns, but with statistically repeatable overall severity and similar visually to retrievals (Fig. 1). We then evaluated the technique through a hip wear study. Twelve UHMWPE liners (40 mm I.D.) were tested against CoCrMo femoral heads on a 12-station hip simulator (AMTI). Liners were three materials: a) Three conventional (GUR1020, gamma-sterilized 3.5 Mrad), b) Three highly cross-linked (HXL) (GUR1020, 10 Mrad, annealed, EtO-sterilized, artificially aged), and c) Six HXL w/vitamin-E (GUR1020, 12 Mrad, annealed, EtO-sterilized, aged). The test comprised three phases. Phase-I: standard clean (non-abrasive, non-scratched) test for 5 Mc; Phase-II: Pulverized PMMA was added to serum at 700 mg/L (to introduce abrasive conditions); however, effects were minimal after 2 Mc (7 Mc total). Phase-III: Femoral heads were scratched using our method. Phase-III lasted for 1 Mc, for a testing total of 8 Mc (ISO-14242-1 waveforms). All specimens were lubricated with bovine serum (37°C, 30g/L protein). Plastic liners were cleaned and weighed at standard intervals, and wear was corrected with active loaded soak controls. The wear results are shown in Fig. 2. The conventional liners showed the highest wear (Phase-I: 55.7 ± 3.00 mg/Mc, Phase-II: 49.2 ± 0.520 mg/Mc, Phase-III: 124 ± 28.9 mg/Mc) while HXL liners displayed much lower wear (Phase-I: 2.58 ± 0.969 mg/Mc; Phase-II: 4.93 ± 1.22 mg/Mc; Phase-III: 9.92 ± 4.64 mg/Mc). Vitamin-E HXL liners also showed very low wear (Phase-I: 5.97 ± 0.50 mg/Mc, Phase-II: 8.89 ± 1.40 mg/Mc, Phase-III: 11.9 ± 2.70 mg/Mc). Addition of the PMMA powder during Phase-II increased liner wear, but the surfaces did not appear damaged like retrievals. Wear rates between Phase-I and Phase-III doubled due to scratching the femoral heads for all material types, a statistically significant increase (p < 0.05). Our results confirm that the scratching procedure successfully created a