Advertisement for orthosearch.org.uk
Results 1 - 20 of 252
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 26 - 26
1 Oct 2012
Lubovsky O Safran O Axelrod D Peleg E Whyne C
Full Access

Fractures of the clavicle are relatively common, occurring mostly in younger patients and have historically been managed non-operatively. Recent studies have shown an advantage to surgical reduction and stabilisation of clavicle fractures with significant displacement. Currently, fracture displacement is measured using simple anterior-posterior two-dimensional x-rays of the clavicle. Since displacement can occur in all three-dimensions, however, evaluation of the amount displacement can be difficult and inaccurate. The purpose of this study was to determine the view that provides the most accurate assessment. Nine CT scans of acute displaced clavicle fractures were analysed with AmiraDEV5.2.2 Imaging software. Measurements for degrees of shortening and fracture displacement of the fracture clavicle were taken. Using a segmentation and manipulation module (ITK toolkit), five digitally reconstructed radiographs (DRRs) mimicking antero-posterior x-rays were created for every CT, with each differing by projection angle (ranging from 20° upwards tilt to 20° downwards tilt). Measurements were taken on each DRR using landmarks of entire clavicle length, distance from vertebrae to fracture (medial fragment length), distance from fracture to acromium (lateral fragment length), and horizontal shortening, and then compared to the true measurement obtained from the original CT. For all 9 samples, after comparing the measurements of clavicle fracture displacement in each 2D image, we found that an AP view with a 20° downward tilt yielded displacement measurements closest to the 3D (“gold standard”) measurements. The results agree with previous data collected from cadaveric specimens using physical X-ray film images. DDRs enable creation of multiple standard AP radiographs from which accurate tilt can be measured. The large deviation in measurements on different DRR projections motivates consideration of standardising X-ray projections. A uniform procedure would allow one to correctly evaluate the displacement of clavicular fractures if fracture displacement information is to be utilized in motivating surgical decision-making


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 231 - 231
1 Jul 2014
Lu H Kuo C Lin C Lu T
Full Access

Summary Statement. The current study introduced the effects of projection errors on ankle morphological measurements using CT-based simulated radiographs by correlation analysis between 2D/3D dimensions and reliability analysis with randomised perturbations while measuring planar parameters on radiographs. Introduction. Clinical success of total ankle arthroplasty (TAA) depends heavily on the available anatomy-based information of the morphology for using implants of precisely matched sizes. Among the clinically available medical imaging modalities, bi-planar projective radiographs are commonly used for this purpose owing to their convenience, low cost, and low radiation dose compared with other modalities such as MRI or CT. However, the intrinsic articular surface of the ankle joint is not symmetrical and oblique which implies that it is difficult to describe all the anatomical dimensions in detail with only one radiograph, thereby hindering the determination of accurate ankle morphometric parameters. The purposes of this study were to compare the measurements of ankle morphology using 3D CT images with those on planar 2D images; and to quantify the repeatability of the 2D measurements under simulated random perturbations. Patients & Methods. Fifty-eight fresh frozen cadaveric ankle specimens were used in the current study. Each specimen was fixed in the neutral position with a plastic frame. After fixation, the specimen-fixation construct was scanned using a 16-slice spiral CT scanner (GE BrightSpeed 16, C&G Technologies, USA) with a slice thickness of 0.625 mm. A global coordinate system was embedded in the ankle specimen with the origin at the geometric center of the talus, the anteroposterior (A/P) axis in parallel to the base-plate, the superoinferior (S/I) axis perpendicular to the base-plate, and the mediolateral (M/L) axis as the line perpendicular to both the A/P and S/I axes. Fourteen 3D morphological parameters were automatically determined using a house-developed program in MATLAB R2010a (The MathWorks, Inc., USA). A simulated standard digital radiography system, in which the X-ray focus was 1 meter away from the image plane, was also introduced to determine the planar 2D morphological parameters for comparing with those determined in 3D. Reliability with randomised perturbations during measurements was also assessed in terms of the intra-class correlation coefficients using a 2-way mixed-effects average model (ICC3, k) for intra-examiner assessments. All statistical analysis was performed using SPSS 13.0 (SPSS Inc., USA). Results. Most of the morphological parameters had high correlation and reliability, except for the maximal tibial thickness (MTiTh), distance between most vertex of tibial mortise to the level of MTiTh (MDV) and radius of trochlea tali (TaR) had moderate to low correlation which were 0.54, 0.37 and 0.09 respectively. The ICC coefficients indicated that the MDV, talus width (TaW) and inclination angle between two most vertex points of trochlea tali (MLATa) had moderate and poor reliability which were 0.59, 0.49 and 0.07 respectively. Discussion/Conclusion. The current study introduced the effects of projection errors on ankle morphological measurements using CT-based simulated radiographs by correlation analysis between 2D/3D dimensions and reliability analysis with randomised perturbations while measuring planar parameters on radiographs. MTiTh and MDV are the important parameters to help surgeon pre-surgical decision-making. TaW is one of the critical parameters for choosing accurate sise of TAA implant. It implies that the respectively accurate pose of ankle is critical during bi-planar radiography


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 30 - 30
7 Jun 2023
Harris E Farrow L Martin C Adam K
Full Access

Hip fracture represents a significant challenge, placing increasing pressure on health and social care services in Scotland. This study establishes the ‘historic’ hip fracture burden, namely, the annual number of hip fractures in Scotland, and respective incidence, between 2017 – 2021. Furthermore, the ‘projected’ hip fracture burden and incidence from 2022 – 2029 was estimated, to inform future capacity and funding of health and social care services. The number of individuals with a hip fracture in Scotland between 2017 and 2021 was identified through the Scottish Hip Fracture Audit, enabling the annual number of hip fractures and respective incidence between 2017 – 2021 to be calculated. Projection modelling was performed using Exponential Smoothing and Auto Regressive Integrated Moving Average to estimate the number of hip fractures occurring annually from 2022 – 2029. A combined average projection was employed to provide a more accurate forecast. Accounting for predicted changes within the population demographics of Scotland, the projected hip fracture incidence up to 2029 was calculated. Between 2017 and 2021 the annual number of hip fractures in Scotland increased from 6675 to 7797 (15%), with an increase in incidence from 313 to 350 per 100,000 (11%) of the at-risk population. Hip fracture was observed to increase across all groups, notably males, and the 70–79 and 80–89 age cohorts. By 2029, the combined average projection estimated the annual number of hip fractures at 10311, with an incidence rate of 463 per 100,000, representing a 32% increase from 2021. The largest percentage increase in hip fracture by 2029 occurs in the 70–79 and 80–89 age cohorts (57% and 53% respectively). Based upon these projections, overall length of hospital stay following hip fracture will increase by 60699 days per annum by 2029, incurring an additional cost of at least £25 million. Projection modelling demonstrates the annual number of hip fractures in Scotland will increase substantially by 2029, with significant implications for health and social care services. This increase in hip fracture burden and incidence is influenced strongly by changing population demographics, primarily an ageing population


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 49 - 49
17 Nov 2023
Jones R Gilbert S Mason D
Full Access

Abstract. OBJECTIVE. Changes in subchondral bone are one of few disease characteristics to correlate with pain in OA. 1. Profound neuroplasticity and nociceptor sprouting is displayed within osteoarthritic (OA) subchondral bone and is associated with pain and pathology. 2. The cause of these neural changes remains unestablished. Correct innervation patterns are indispensable for bone growth, homeostasis, and repair. Axon guidance signalling factor, Sema3A is essential for the correct innervation patterning of bony tissues. 3. , expressed in osteocytes. 4. and known to be downregulated in bone OA mechanical loading. 5. Bioinformatic analysis has also shown Sema3a as a differentially expressed pathway by bone in human OA patients. 6. HYPOTHESIS: Pathological mechanical load and inflammation of bone causes dysregulation of Sema3A signalling leading to perturbed sensory nerve plasticity and pain. METHODS. Human KOLF2-C1 iPSC derived nociceptors were generated by TALEN-mediated insertion of transcription factors NGN2+Brn3A and modified chambers differentiation protocol to produce nociceptor-like cells. Nociceptor phenotype was confirmed by immunocytochemistry. Human Y201-MSC cells were embedded in 3D type-I collagen gels (0.05 × 106 cell/gel), in 48-well plates and silicone plates, were differentiated to osteocytes for 7 days before stimulation with IL-6 (5ng/ml) and soluble IL-6 receptor (sIL-6r (40ng/ml), IL6/sIL6r and mechanical load mimetic Yoda1 (5μM) or unstimulated (n=5/group) (48-well plates) or were mechanically loaded in silicone plates (5000μstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). Conditioned media transfer was performed from osteocyte to nociceptor cultures assessed by continuous 24-hour phase contrast confocal microscopy. 24-hours after stimulation RNA was quantified by RT-qPCR (IL6) or RNAseq whole transcriptome analysis/DEseq2 analysis (Load). Protein release was quantified by ELISA. Normally distributed data with homogenous variances was analysed by two-tailed t test. RESULTS. IPSC-derived nociceptor-like cells display elongated (>5mm) dendritic projections and nociceptive molecular markers such as TUJ1, PrPH and Neun and TrkA. Sema3A signalling ligands were expressed in 100% of osteocyte cultures. Mechanical loading regulated the Sema3 pathway; Sema3A (0.4-fold, p<0.001), Sema3B (13-fold, p<0.001), Sema3C (0.4-fold, p<0.001). Under inflammatory stimulation by IL6/IL6sR, SEMA3A (7-fold, p=0.01) and receptor Plexin1 (3-fold, p=0.03) show significant regulation. Sema3A protein release showed a significant downregulation of Sema3A release by IL6/sIL6r+Yoda1 (2-fold, p=0.02). Continuous 24-hour phase contrast confocal microscopy measuring the number of extending/retreating dendritic projections revealed that sensory nerve cultures exposed to media from osteocytes stimulated with IL-6/sIL-6R+Yoda1 displayed significantly more invading dendritic projections (p=0.0175, 12-fold±SEM 3.5) across 3 random fields of view within a single stimulated neural culture and significantly fewer retracting dendritic projections (p=0.0075, 2-fold±SEM 0.33) compared to controls. CONCLUSIONS. Here we show osteocytic regulation of Sema3A under pathological mechanical loading and the ability of media pathologically loaded osteocyte cultures to induce the branching and invasion of cultured nociceptor-like cells as displayed in OA subchondral bone. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_5 | Pages 9 - 9
13 Mar 2023
Harris E Farrow L Martin C Adam K Holt G
Full Access

The hip fracture burden on health and social care services in Scotland is anticipated to increase significantly, primarily driven by an ageing population. This study forecasts future hip fracture incidence and the annual number of hip fractures in Scotland until 2029. The monthly number of patients with hip fracture aged ≥ 50 admitted to a Scottish hospital between 01/01/2017 and 31/12/2021 was identified through data collected by the Scottish Hip Fracture Audit. This data was analysed using Exponential Smoothing and Auto Regressive Integrated Moving Average forecast modelling to project future hip fracture incidence and the annual number of hip fractures until 2029. Adjustments for population change were accounted for by integrating population projections published by National Records of Scotland. Between 2017 and 2021 the annual number of hip fractures in Scotland increased from 6675 to 7797, with a respective increase in hip fracture incidence from 313 to 350 per 100,000. By 2029, the averaged projected annual number of hip fractures is 10311, with an incidence rate of 463 per 100,000. The largest percentage increase in hip fracture occurs in the 70-79 age group (57%), with comparable increases in both sexes (30%). Based upon these projections, overall length of stay following hip fracture will increase from 142713 bed days per annum in 2021, to 203412 by 2029, incurring an additional cost of over £25 million. Forecast modelling demonstrates that the annual number of hip fractures in Scotland will rise substantially by 2029, with considerable implications for health and social care services


Bone & Joint Open
Vol. 3, Issue 10 | Pages 795 - 803
12 Oct 2022
Liechti EF Attinger MC Hecker A Kuonen K Michel A Klenke FM

Aims. Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric model and clinical data. Methods. We analyzed the FOs measured on AP hip and pelvis radiographs in a prospective consecutive series of 55 patients undergoing unilateral primary THA for hip osteoarthritis. To determine sample size, a power analysis was performed. Patients’ position and X-ray beam setting followed a standardized protocol to achieve reproducible projections. All images were calibrated with the KingMark calibration system. In addition, a geometric model was created to evaluate both the effects of leg position (rotation and abduction/adduction) and the effects of X-ray source position on FO measurement. Results. The mean FOs measured on AP hip and pelvis radiographs were 38.0 mm (SD 6.4) and 36.6 mm (SD 6.3) (p < 0.001), respectively. Radiological view had a smaller effect on FO measurement than inaccurate leg positioning. The model showed a non-linear relationship between projected FO and femoral neck orientation; at 30° external neck rotation (with reference to the detector plane), a true FO of 40 mm was underestimated by up to 20% (7.8 mm). With a neutral to mild external neck rotation (≤ 15°), the underestimation was less than 7% (2.7 mm). The effect of abduction and adduction was negligible. Conclusion. For routine THA templating, an AP pelvis radiograph remains the gold standard. Only patients with femoral neck malrotation > 15° on the AP pelvis view, e.g. due to external rotation contracture, should receive further imaging. Options include an additional AP hip view with elevation of the entire affected hip to align the femoral neck more parallel to the detector, or a CT scan in more severe cases. Cite this article: Bone Jt Open 2022;3(10):795–803


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 9 - 9
1 Aug 2021
Farrow L Gaba S Ashcroft G
Full Access

The rising prevalence of osteoarthritis, associated with an ageing population, is expected to deliver increasing demand across Scotland for arthroplasty services in the future. Understanding the scale of potential change to operative workflow is essential to ensure adequate provision of services and prevent prolonged waiting times that can cause patient harm. This future service demand for primary and revision hip arthroplasty across Scotland, and the rest of the U.K., is hitherto unknown. We set out to provide projections of future primary & revision hip arthroplasty out to 2038 utilising historical trend data (2008–2018) from the Scottish Arthroplasty Project. All analyses were performed using the Holt's exponential smoothing projection method with the forecast package in R statistics. Results were adjusted for projected future population estimates provided by National Records of Scotland. Independent age & sex group predictions were also performed. All results are presented per 100,000 population at-risk per year (/100k/year). The predicted rise of primary hip arthroplasty for all ages is from 120/100k/year in 2018 to 152/100k/year in 2038, a 27% increase. Based on a static 3 day length of stay average this would see 4280 additional patient bed days required for primary hip arthroplasty patients per annum. The number of revision hip arthroplasty procedures for all ages is projected to fall from 14/100k/year to 4/100k/year based on historical trend data. This does not however take into account the suspect increase in primary arthroplasty numbers that is likely to influence future revision rates. Anticipated future demand for primary hip arthroplasty will require significant additional resource and funding to prevent deterioration in quality of care and an increase in patient wait times. Demand for revision arthroplasty is set to decrease, likely on account of improved implant materials, technique, and understanding of best practice to minimise complication risk. This doesn't however take into account the impact of the complex interaction between an increasing primary arthroplasty rate and revision risk. Understanding presented projections of changes to arthroplasty demand is key to future service delivery


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 70 - 70
1 Aug 2020
Montreuil J Lavoie F Thibeault F Cresson T de Guise J
Full Access

Evaluate precisely and reproducibly tridimensional positioning of bone tunnels in anterior cruciate ligament reconstructions (ACL). To propose biplanar stereoradiographic imaging as a new reference in tridimensional evaluation of ACL reconstruction (ACLR). Comparing knee 3D models issued from EOStm low-irradiation biplanar X-Ray with those issued from computed tomography (CT-Scan) high definition images will allow a bone morphological description of a previously unseen precision. We carried out the transfer of 3D models from EOStm X-Ray images obtained from 10 patients in the same reference frame with models issued from CT-Scan. Two evaluators reconstructed both pre-operative and post-operative knees, using two different stereoradiographic projections, for a total of 144 knee 3D models from EOStm. A surface analysis by distance mapping allowed us to know the differences or errors between the homologous points of the EOStm and CT reconstructions, the latter being our “bronze-standard”. At the femur, we obtained a mean (95% confidence level) error of 1.5 mm (1.3–1.6) between the EOStm models compared to the Arthro-CT segmentations when using AP-LAT incidences, compared to 1 mm (1.0 – 1.1) with oblique projections. For the tunnels placement analysis, the total radius difference between EOStm and Arthro-CT's femoral tunnel apertures was 0.8 mm (0.4–1.2) in AP-LAT and 0.6 mm (0.0–1.2) in oblique views. These femoral apertures positioning on EOStm models were within 4.3 mm (3.0–5.7) of their homologues on CT-Scan models, 4.6 mm (3.5–5.6) with the oblique views. Furthermore, 9.3o (7.2–11.4) of difference in direction between femoral tunnels from EOStm models and CT reconstructions is obtained with AP-LAT projections, 8.3o (6.6–10) with obliques views. Measures of these parameters were also performed at the tibia. According to the intra and inter-reproducibility analysis of our knee 3D models, EOStm biplanar X-Ray images prove to be fast, efficient and precise in the design of ACLR 3D models with respect to CT-Scan. Our results also propose the recourse of oblique stereoradiographic projections for the realization of knee 3D models. These models will be subjects of further analysis and will allow us eventually to propose a new frame of reference guiding the positioning of the tunnels in the ACLR


Bone & Joint Research
Vol. 10, Issue 12 | Pages 780 - 789
1 Dec 2021
Eslam Pour A Lazennec JY Patel KP Anjaria MP Beaulé PE Schwarzkopf R

Aims. In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Methods. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data. Results. The stem with a rectangular neck has increased internal and external rotation with a quatrefoil cross-section compared to a cone in a cylindrical neck. Modification of the cup orientation and pelvic tilt affected the direction of projection of the cone or quatrefoil shape. The mean increase in internal rotation with a rectangular neck was 3.4° (0° to 7.9°; p < 0.001); for external rotation, it was 2.8° (0.5° to 7.8°; p < 0.001). Conclusion. Our study shows the importance of attention to femoral implant design for the assessment of prosthetic impingement. Any universal mathematical model or computer simulation that ignores each stem’s unique neck geometry will provide inaccurate predictions of prosthetic impingement. Cite this article: Bone Joint Res 2021;10(12):780–789


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 66 - 66
2 Jan 2024
Burssens A
Full Access

Osteotomies in the musculoskeletal system are joint preserving procedures to correct the alignment of the patient. In the lower limb, most of the pre-operative planning is performed on full leg weightbearing radiographs. However, these images contain a 2-dimensional projection of a 3-dimensional deformity, lack a clear visualization of the joint surface and are prone to rotational errors during patient positioning. Weightbearing CT imaging has demonstrated to overcome these shortcomings during the first applications of this device at level of the foot and ankle. Recent advances allow to scan the entire lower limb and novel applications at the level of the knee and hip are on the rise. Here, we will demonstrated the current techniques and 3-dimensional measurements used in supra- and inframalleolar osteotomies around the ankle. Several of these techniques will be transposed to other parts in the lower limb to spark future studies in this field


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 114 - 114
11 Apr 2023
Tay M Young S Hooper G Frampton C
Full Access

Unicompartmental knee arthroplasty (UKA) is associated with a higher risk of revision compared with total knee arthroplasty (TKA). The outcomes of knee arthroplasty are typically presented as implant survival or incidence of revision after a set number of years, which can be difficult for patients and clinicians to conceptualise. We aimed to calculate the ‘lifetime risk’ of revision for UKA as a more relatable estimate of risk projection over a patient's remaining lifetime, and make comparisons to TKA. All primary UKAS performed from 1999 to 2019 (n=13,481) captured by the New Zealand Joint Registry (NZJR) were included. The lifetime risk of revision was calculated and stratified by age, gender and American Society of Anesthesiologists (ASA) status. The lifetime risk of revision for UKA was highest in the youngest patients (46-50 years; 40.4%) and lowest in the oldest patients (86-90 years; 3.7%). Lifetime risk of revision was higher for females (range 4.3%-43.4% cf. males 2.9%-37.4%) and patients with higher ASA status (ASA 3-4 range 8.8%-41.2% cf. ASA 1 1.8%-29.8%), regardless of age. The lifetime risk of UKA was two-fold higher than TKA (ranging from 3.7%-40.4% UKA, 1.6%-22.4% TKA) across all age groups. Increased risk of revision in the younger patients was associated with aseptic loosening in both males and females, and pain in females. Periprosthetic joint infections (PJI) accounted for 4% of all UKA revisions, in contrast to 27% for TKA; risk of PJI was higher for males than females for both procedures. The lifetime risk of revision is a more meaningful measure of arthroplasty outcomes and can aid with patient counselling prior to UKA. Findings from this study show the increased lifetime risk of UKA revision for younger patients, females and those with higher ASA status


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_8 | Pages 12 - 12
1 May 2021
Farrow L Gaba S Ashcroft GP
Full Access

The rising prevalence of osteoarthritis, associated with an ageing population, is expected to deliver increasing demand across Scotland for primary hip and knee arthroplasty in the future. Understanding the scale of potential change to operative workflow is essential to ensure adequate provision of services, and prevent prolonged waiting times that can cause patient harm. We therefore set out to provide projections of future primary hip and knee arthroplasty out to 2038 utilising historical trend data (2008–2018) from the Scottish Arthroplasty Project. All analyses were performed using the Holt's exponential smoothing projection method with the forecast package in R statistics. Results were adjusted for projected future population estimates provided by National Records of Scotland. Independent age & sex group predictions were also performed. All results are presented per 100,000 population at-risk per year (/100k/year). The predicted rise of primary hip arthroplasty for all ages is from 120/100k/year in 2018 to 152/100k/year in 2038, a 27% increase. The predicted rise of primary knee arthroplasty for all ages is from 164/100k/year in 2018 to 220/100k/year in 2038, a 34% increase. Based on a static 3 day length of stay average this would see 4280 additional patient bed days for hips, and 7392 for knees, required nationally per year by 2038. The associated supplementary cost to the NHS is anticipated to be around £21 million per annum. Knowledge of increasing resource utilisation and cost associated with predicted future demand for primary hip and knee arthroplasty provides key information for service organisation and delivery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 114 - 114
4 Apr 2023
Liu D Gao J Zheng M Liao P Li H Zhang C
Full Access

Though dentin matrix protein 1 (Dmp1) is known to play critical role in mediating bone mineralization, it has also been validated to be expressed in brain and helps maintain blood brain barrier (BBB). Our study aims to clarify the expression pattern of Dmp1 in mouse brain and explore whether intercellular mitochondrial transfer occurs between Dmp1 positive astrocytes (DPAs) and endothelial cells, and thus acting as a mechanism in maintaining BBB during aging. Single cell RNA sequencing (scRNAseq) of 1 month, 6 month, and 20 month old mice brain (n=1, respectively) was employed to identify Dmp1 positive cell types. Dmp1. Cre. -mGmT and Dmp1. Cre. -COX8a fluorescent mice were generated to visualize DPAs and investigate their mitochondrial activities. A 3D noncontact coculture system and mitochondrial transplantation were applied to study the role of mitochondrial transfer between astrocytes and bEnd.3 endothelial cells. Dmp1. Cre. -Mfn2. f/f. mice were generated by depleting the ER-mitochondria tethering protein Mfn2 in DPAs. Dmp1 was mainly expressed in astrocytes at different ages. GO analysis revealed that cell projection and adhesion of DPAs were upregulated. Confocal imaging on Dmp1. Cre. -mGmT mice indicated that DPAs are a cluster of astrocytes that closely adhere to blood vessels (n=3). Bioinformatics analysis revealed that mitochondrial activity of DPAs were compromised during aging. Enriched scRNAseq of fluorescent cells from Dmp1. Cre. -COX8a mice (n=2) and immunofluorescent imaging (n=3) validated the acquisition of extrinsic mitochondria in endothelial cells. 3D coculture of astrocytes and bEnd.3 and direct mitochondrial transplantation revealed the rescue effect of mitochondrial transfer on damaged bEnd.3. BBB was impaired after depleting Mfn2 in DPAs, expressing a similar phenotype with aging brain. Astrocytes that express Dmp1 play a significant role in maintaining BBB via transferring mitochondria to vascular endothelial cells. Compromised mitochondrial transfer between DPAs and endothelial cells might be the potential mechanism of impaired BBB during aging


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 63 - 63
4 Apr 2023
Rashid M Cunningham L Walton M Monga P Bale S Trail I
Full Access

The purpose of this study is to report the clinical and radiological outcomes of patients undergoing primary or revision reverse total shoulder arthroplasty using custom 3D printed components to manage severe glenoid bone loss with a minimum of 2-year follow-up. After ethical approval (reference: 17/YH/0318), patients were identified and invited to participate in this observational study. Inclusion criteria included: 1) severe glenoid bone loss necessitating the need for custom implants; 2) patients with definitive glenoid and humeral components implanted more than 2 years prior; 3) ability to comply with patient reported outcome questionnaires. After seeking consent, included patients underwent clinical assessment utilising the Oxford Shoulder Score (OSS), Constant-Murley score, American Shoulder and Elbow Society Score (ASES), and quick Disabilities of the Arm, Shoulder, and Hand Score (quickDASH). Radiographic assessment included AP and axial projections. Patients were invited to attend a CT scan to confirm osseointegration. Statistical analysis utilised included descriptive statistics (mean and standard deviation) and paired t test for parametric data. 3 patients had revision surgery prior to the 2-year follow-up. Of these, 2/3 retained their custom glenoid components. 4 patients declined to participate. 5 patients were deceased at the time of commencement of the study. 21 patients were included in this analysis. The mean follow-up was 36.1 months from surgery (range 22–60.2 months). OSS improved from a mean 16 (SD 9.1) to 36 (SD 11.5) (p < 0.001). Constant-Murley score improved from mean 9 (SD 9.2) to 50 (SD 16.4) (p < 0.001). QuickDASH improved from mean 67 (SD 24) to 26 (SD 27.2) (p = 0.004). ASES improved from mean 28 (SD 24.8) to 70 (SD 23.9) (p = 0.007). Radiographic evaluation demonstrated good osseointegration in all 21 included patients. The utility of custom 3D-printed components for managing severe glenoid bone loss in primary and revision reverse total shoulder arthroplasty yields significant clinical improvements in this complex patient cohort


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_15 | Pages 17 - 17
1 Sep 2016
Nogaro M Monk A Wittmann U Buckingham R
Full Access

The aim was to determine reliability in treatment threshold based on USS angular measurements between observers involved in the DDH hip screening programme at the NOC and assess the effect of image orientation on the accuracy of these measurements. 3 independent observers measured alpha and beta angles on bilateral hips in 10 consecutive patients seen in the DDH hip screening clinic. All scans were performed by a single radiographer and observers used the same set of USS images for a given patient. Each observer measured alpha and beta angles a total of 4 times: conventional ultrasound image projection (with the ilium horizontal) (round 1), Graf's anatomical projection (round 2), and both techniques repeated 1 month later (round 3 and 4 respectively) to assess intra-observer reliability. To determine its effect on treatment threshold taking into account alpha and beta angles and patient's age, the consistency between observers' management recommendations was evaluated for each round. Possible outcomes were: 1) patient discharged, 2) no treatment needed yet, but follow-up required, 3) start treatment. Intra-observer reliability for conventional projection was moderate (Kappa 0.58), and improved for anatomical projection (Kappa 0.65). Inter-observer reliability, as a surrogate measure of consistency in management recommendations between observers, ranged from fair to moderate across the 4 rounds (Kappa 0.30 – 0.50). However, contrary to previous recommendations, reliability was better with conventional projection (Kappa 0.41 (95% CI 0.11–0.72)) compared to anatomical projection (Kappa 0.36 (95% CI −0.01–0.73)). The overall agreement in management recommendations, pooling all results across 4 rounds, was 51.3% (Kappa 0.39 (95%CI 0.15–0.63)). This audit supports the argument that anatomical image projection improves intra-observer consistency. However, as with all USS measurements, angular measurements were highly user dependent and treatment threshold based on USS may not be as consistent as anticipated


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_1 | Pages 10 - 10
1 Jan 2019
Harris E Holt G
Full Access

Due to changes in population demographics, the burden of hip fractures in Scotland is expected to rise dramatically over the coming decades. This study aims to establish the future incidence of hip fracture in Scotland in individuals aged 50 and over. The number of patients admitted to hospital in Scotland with a hip fracture between 1999 and 2016 were ascertained from discharge coding across NHS Scotland. The annual number of hip fractures were categorised to enable gender and age specific hip fracture incidence rates to be calculated. Through static and variable projection methods, the annual hip fracture incidence up to 2035 was forecast and analysed with respect to specific demographics ascertained from population data provided by the National Records of Scotland. Between 1999 and 2016 the total number of hip fractures in individuals aged 50 and over increased by 11%, from 7,131 to 7,930, equating to an average year-on-year increase of 0.6%. Patients aged over 75 consistently accounted for more than 85% of recorded hip fractures, with females having a higher incidence rate than males across all age groups. A decreasing incidence in females aged over 70 was observed. Using multiple projection methods, the annual number of hip fractures in Scotland is predicted to increase by 55% from 7,930 in 2016, to an average of 12,316 by 2035. Projection modelling confirms the annual number of hip fractures in Scotland will rise substantially by 2035 with considerable implications for health and social care provision


Bone & Joint Open
Vol. 3, Issue 4 | Pages 302 - 306
4 Apr 2022
Mayne AIW Cassidy RS Magill P Mockford BJ Acton DA McAlinden MG

Aims. Waiting times for arthroplasty surgery in Northern Ireland are among the longest in the NHS, which have been further lengthened by the onset of the COVID-19 global pandemic in March 2020. The Department of Health in Northern Ireland has announced a new Elective Care Framework (ECF), with the framework proposing that by March 2026 no patient will wait more than 52 weeks for inpatient/day case treatment. We aimed to assess the feasibility of achieving this with reference to total hip arthroplasty (THA) and total knee arthroplasty (TKA). Methods. Mathematical modelling was undertaken to calculate when the ECF targets will be achieved for THA and TKA, as well as the time when waiting lists for THA and TKA will be cleared. The number of patients currently on the waiting list and percentage operating capacity relative to pre-COVID-19 capacity was used to determine future projections. Results. As of May 2021, there were 3,757 patients awaiting primary THA and 4,469 patients awaiting primary TKA in Northern Ireland. Prior to April 2020, there were a mean 2,346 (2,085 to 2,610) patients per annum boarded for primary THA, a mean 2,514 (2,494 to 2,514) patients per annum boarded for primary TKA, and there were a mean 1,554 primary THAs and 1,518 primary TKAs performed per annum. The ECF targets for THA will only be achieved in 2030 if operating capacity is 200% of pre COVID-19 pandemic capacity and in 2042 if capacity is 170%. For TKA, the targets will be met in 2034 if capacity is 200% of pre-COVID-19 pandemic capacity. Conclusion. This modelling demonstrates that, in the absence of major funding and reorganization of elective orthopaedic care, the targets set out in the ECF will not be achieved with regard to THA and TKA. Waiting times for THA and TKA surgery in Northern Ireland are likely to remain greater than 52 weeks for most of this decade. Cite this article: Bone Jt Open 2022;3(4):302–306


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 6 - 6
1 Apr 2022
Mayne A Cassidy R Magill P Mockford B Acton D McAlinden G
Full Access

Waiting times for arthroplasty surgery in Northern Ireland are among the longest in the National Health Service, which have been further lengthened by the onset of the SARS-CoV-19 global pandemic in March 2020. The Department of Health (DoH) in Northern Ireland has announced a new Elective Care Framework (ECF), with the framework proposing that by March 2026 no patient will wait more than 52 weeks for inpatient/day case treatment. We aimed to assess the feasibility of achieving this with reference to Total Hip Arthroplasty (THA). Waiting list information was obtained via a Freedom of Information request to the DoH (May 2021) and National Joint Registry data was used to determine baseline operative numbers. Mathematical modelling was undertaken to calculate the time taken to meet the ECF target and also to determine the time to clear the waiting lists for THA using the number of patients currently on the waiting list and percentage operating capacity relative to pre-Covid-19 capacity to determine future projections. As of May 2021, there were 3,757 patients awaiting primary THA in Northern Ireland. Prior to April 2020, there were a mean 2,346 patients/annum added to the waiting list for primary THA and there were a mean 1,624 primary THAs performed per annum. The ECF targets for THA will only be achieved in 2026 if operating capacity is 200% of pre COVID-19 pandemic capacity and will be achieved in 2030 if capacity is 170%. Surgical capacity must exceed pre-Covid capacity by at least 30% to meet ongoing demand. THA capacity was significantly reduced following resumption of elective orthopaedics post-COVID-19 (22% of pre-COVID-19 capacity – 355 THAs/annum post-COVID-19 versus 1,624/annum pre-COVID-19). This modelling demonstrates that, in the absence of major funding and reorganisation of elective orthopaedic care, the targets set out in the ECF will not be achieved with regards to hip arthroplasty. Waiting times for THA surgery in the NHS in Northern Ireland are likely to remain greater than 52 weeks for most of this decade


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 65 - 65
1 Aug 2017
Callaghan J
Full Access

Liner exchange and bone grafting are commonly used in cases of wear and osteolysis around well- fixed acetabular components in revision total hip arthroplasty. However, in total knee revision, liner exchange is a more rare option. In a multicenter study, we evaluated 22 TKAs that were revised with liner exchange and bone grafting for wear and osteolysis. All knees were well-fixed and well-aligned, and all components were modular tibial components. Osteolytic areas averaged 21.1cm2 and 7.6cm2 on AP projections of the femur and tibia, respectively, and averaged 21.6cm2 and 5.7cm2 on lateral projections of the femur and tibia, respectively, with the largest area being 54cm2 on a single projection. Follow up was minimum 2 years and average 40 months. No knees were revised and radiographically, all osteolytic lesions showed evidence of complete or partial graft incorporation. In addition, there was no radiographic evidence of loosening at final follow up. The Mayo Clinic evaluated 56 isolated tibial insert exchange revisions at their institution. Cases of loosening, infection, knee stiffness, or extensor mechanism problems were excluded. At minimum 2-year follow up (average 4.6 years), 14 knees (25%) required re-revision. Baker et al. evaluated 45 total knees undergoing isolated tibial insert exchange. At minimum 2 years, 4 knees (9%) required revision. Significant improvement was seen in clinical outcomes questionnaires, but only 58% had clinical successful global WOMAC scores. In summary, isolated liner exchange in the revision total knee setting has variable results. It can be successful but it is indeed a rare option and should be limited to cases were the total knee arthroplasty is both well-fixed and well-aligned


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 125 - 125
1 Nov 2021
Sánchez G Cina A Giorgi P Schiro G Gueorguiev B Alini M Varga P Galbusera F Gallazzi E
Full Access

Introduction and Objective. Up to 30% of thoracolumbar (TL) fractures are missed in the emergency room. Failure to identify these fractures can result in neurological injuries up to 51% of the casesthis article aimed to clarify the incidence and risk factors of traumatic fractures in China. The China National Fracture Study (CNFS. Obtaining sagittal and anteroposterior radiographs of the TL spine are the first diagnostic step when suspecting a traumatic injury. In most cases, CT and/or MRI are needed to confirm the diagnosis. These are time and resource consuming. Thus, reliably detecting vertebral fractures in simple radiographic projections would have a significant impact. We aim to develop and validate a deep learning tool capable of detecting TL fractures on lateral radiographs of the spine. The clinical implementation of this tool is anticipated to reduce the rate of missed vertebral fractures in emergency rooms. Materials and Methods. We collected sagittal radiographs, CT and MRI scans of the TL spine of 362 patients exhibiting traumatic vertebral fractures. Cases were excluded when CT and/or MRI where not available. The reference standard was set by an expert group of three spine surgeons who conjointly annotated (fracture/no-fracture and AO Classification) the sagittal radiographs of 171 cases. CT and/or MRI were used confirm the presence and type of the fracture in all cases. 302 cropped vertebral images were labelled “fracture” and 328 “no fracture”. After augmentation, this dataset was then used to train, validate, and test deep learning classifiers based on the ResNet18 and VGG16 architectures. To ensure that the model's prediction was based on the correct identification of the fracture zone, an Activation Map analysis was conducted. Results. Vertebras T12 to L2 were the most frequently involved, accounting for 48% of the fractures. Accuracies of 88% and 84% were obtained with ResNet18 and VGG16 respectively. The sensitivity was 89% with both architectures but ResNet18 had a significantly higher specificity (88%) compared to VGG16 (79%). The fracture zone used was precisely identified in 81% of the heatmaps. Conclusions. Our AI model can accurately identify anomalies suggestive of TL vertebral fractures in sagittal radiographs precisely identifying the fracture zone within the vertebral body