Introduction. Both measured resection technique and gap balancing technique have been important surgical concepts in total knee arthroplasty (TKA). Modified gap technique has been reported to be beneficial for the intra-operative soft tissue balancing in
Introduction. Mid-flexion stability is believed to be an important factor influencing successful clinical outcomes in total knee arthroplasty. The post of a
Introduction. Patellar crepitus and clunk are tendofemoral-related complications predominantly associated with
The mean age of patients undergoing total knee arthroplasty (TKA) has reduced with time. Younger patients have increased expectations following TKA. Aseptic loosening of the tibial component is the most common cause of failure of TKA in the UK. Interest in cementless TKA has re-emerged due to its encouraging results in the younger patient population. We review a large series of tantalum trabecular metal cementless implants in patients who are at the highest risk of revision surgery. A total of 454 consecutive patients who underwent cementless TKA between August 2004 and December 2021 were reviewed. The mean follow-up was ten years. Plain radiographs were analyzed for radiolucent lines. Patients who underwent revision TKA were recorded, and the cause for revision was determined. Data from the National Joint Registry for England, Wales, Northern Island, the Isle of Man and the States of Guernsey (NJR) were compared with our series.Aims
Methods
Introduction. When evaluating the biomechanical performance of a total knee arthroplasty (TKA) implant design, device companies are usually required to select the “worst case scenario” for testing by the regulatory bodies. However, most test standards (e.g., ASTM, ISO) do not explicitly specify how the “worst case” should be determined. It is quite often that an extreme size (the smallest or the largest) in a system is taken as the “worst case” size. The smallest size is sometimes selected under the rationale that it has the smallest geometry thus the weakest mechanical structure. While the largest size is sometimes selected under the rationale that it is used on the biggest patients associated with the highest loads. However, implant geometry and in vivo load are two compounding factors that together determine the implant's biomechanical challenge. As the result, the true “worst case” must be determined considering both factors, and the choice could be design-specific. This study evaluated the femorotibial contact stress of a TKA implant system, and demonstrated that the extreme sizes may not simply be the “worst case”. Methods. The femorotibial contact stress of a
Introduction:. While survivorship of total knee arthroplasty (TKA) is excellent, up to 25% of patients remain dissatisfied with their outcome [1, 2]. Knee instability, which is common during high demand activities, contributes to patient dissatisfaction [3]. As younger patients undergo TKA, longevity requirements and functional demands will rise [4]. Design factors influence the functional outcome of the procedure [5, 6], although in clinical studies it can be difficult to distinguish joint mechanics differences between designs due to confounding variability in patient-related factors. The objective of the current study was to assess the stability and mechanics of several current TKA designs during high-demand dynamic activities using a computational model of the lower limb. Methods:. Three high-demand dynamic activities (gait, stepdown, squat) were simulated in a previously described lower limb model (Fig. 1) [7]. The model included calibrated tibiofemoral (TF) soft-tissue structures, patellofemoral (PF) ligaments and extensor mechanism [8]. Loading conditions for the simulations were derived from telemetric patient data in order to evaluate TKA designs under physiological kinematic and loading conditions [7, 9]. Four fixed-bearing TKA designs (both cruciate-retaining (CR) and
Introduction. Increasing attention to the functional outcome of total knee arthroplasty (TKA) has demonstrated that many patients experience limitations when attempting to perform demanding activities that are normal for age-matched peers, primarily because of knee symptoms. Episodes of instability following TKA are most commonly reported during activities in which significant transverse or torsional forces are supported by the joint with relatively low joint compression forces, including stair-descent and walking on sloped or uneven surfaces. This study was performed to examine the influence of conformity between the femoral and tibial components on the Antero-Posterior (AP) stability of knee during stair descent. Methods. Six cadaveric knees were loaded in a six degree-of-freedom joint simulator, with the application of external forces simulating the action of the quadriceps and hamstring muscles and the external loads and moments occurring during stair descent, including the stages of terminal swing phase, weight-acceptance phase (prior to and after quadriceps contraction) and mid-stance. During these manoeuvres, the displacement and rotation of the femur and the tibia were measured with a multi-camera high resolution motion analysis system (Fig. 1). Each knee was tested in the intact and ACL deficient condition – and after implantation of total knee prosthesis with Cruciate-Retaining (CR), Cruciate-Sacrificing with an intact PCL (CS + PCL), Cruciate-Sacrificing with an absent PCL (CS-PCL) and
The primary aim of this prospective, multicentre study is to describe the rates of returning to golf following hip, knee, ankle, and shoulder arthroplasty in an active golfing population. Secondary aims will include determining the timing of return to golf, changes in ability, handicap, and mobility, and assessing joint-specific and health-related outcomes following surgery. This is a multicentre, prospective, longitudinal study between the Hospital for Special Surgery, (New York City, New York, USA) and Edinburgh Orthopaedics, Royal Infirmary of Edinburgh, (Edinburgh, UK). Both centres are high-volume arthroplasty centres, specializing in upper and lower limb arthroplasty. Patients undergoing hip, knee, ankle, or shoulder arthroplasty at either centre, and who report being golfers prior to arthroplasty, will be included. Patient-reported outcome measures will be obtained at six weeks, three months, six months, and 12 months. A two-year period of recruitment will be undertaken of arthroplasty patients at both sites.Aims
Methods
Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.Aims
Methods