Background: Healing of segmental diaphyseal bone defects in animals can be enhanced by covering the defects with resorbable
Osteochondral injuries, if not treated adequately, often lead
to severe osteoarthritis. Possible treatment options include refixation
of the fragment or replacement therapies such as Pridie drilling,
microfracture or osteochondral grafts, all of which have certain
disadvantages. Only refixation of the fragment can produce a smooth
and resilient joint surface. The aim of this study was the evaluation
of an ultrasound-activated bioresorbable pin for the refixation of
osteochondral fragments under physiological conditions. In 16 Merino sheep, specific osteochondral fragments of the medial
femoral condyle were produced and refixed with one of conventional
bioresorbable pins, titanium screws or ultrasound-activated pins.
Macro- and microscopic scoring was undertaken after three months. Objectives
Methods
Massive segmental bone defects in long bones remain a considerable clinical challenge and are a source for significant morbidity and prolonged dysfunction for the patient. We demonstrate the successful use of resorbable
Introduction: Platelet rich plasma (PRP) has been hypothesised to be of potential benefit to articular cartilage tissue engineering, through its release of autologous growth factors. The aim of this study was to ascertain whether the addition of thrombin is required to achieve platelet activation and sustained growth factor release in-vitro, when PRP is applied to a collagen based osteochondral scaffold. Methods: Collagen/glycosaminoglycan scaffolds were fashioned, to which equal combined volumes of test substances were added (n=3): 500μl PRP; 375μl PRP + 125μl autologous thrombin (3:1); 455μl PRP + 45μl bovine thrombin (10:1). One ml of DMEM/F12 medium was added to each scaffold and changed completely at 12/24 hours, and 3/10 days, following which release of TGF-β1, PDGF-AB and bFGF were measured using ELISA. Secondly, equal sized collagen/glycosaminogly-can and
Use of scaffolds for articular cartilage repair (ACR) has increased over the last years with many biomaterials options suggested for this purpose. It is known that scaffolds for ACR have to be optimally biodegradable with simultaneous promotion of chondrogenesis, favouring hyaline cartilage formation under rather complex biomechanical and physiological conditions. Whereas improvement of the scaffolds by their conditioning with stem cells or adult chondrocytes can be employed in bioreactors, “ideal” scaffolds should be capable of performing such functions directly after implantation. It was previously considered that scaffold structure and composition would be the best if it mimics the structure of native cartilage. However, in this case no clear reparative stimuli are being imposed on the scaffold area, which would drive chondrocytes activity in a desired way. In this work, we studied new xeno-free, recombinant human type III collagen-laden
The treatment of acute full thickness chondral damage within the knee is a surgical challenge. Frequently used surgical techniques include chondroplasty, micro-fracture and chondrocyte implantation. These procedures give unpredictable functional outcomes and if the formation of neocartilage is achieved it is predominantly composed of type 1 collagen. The TruFit osteochondral plug was designed to provide a scaffold for cell proliferation into full thickness chondral defects. It is a composite polymer composed of
Aims: Meniscus repair has become the procedure of choice for the treatment of meniscal tears whenever possible. However, problems with healing of the repaired meniscus do exist. We have assessed both clinically and with MRI the outcome of meniscal ruptures treated with bioabsorbable arrows. Methods: 74 consecutive patients with 80 longitudinal vertical meniscal tears were treated using
Introduction: Platelet rich plasma (PRP) has been hypothesised to be of potential benefit to articular cartilage tissue engineering, through its release of autologous growth factors. The aim of this study was to ascertain whether the addition of thrombin is required to achieve platelet activation and sustained growth factor release in-vitro, when PRP is applied to a collagen based osteochondral scaffold. Methods: Collagen/glycosaminoglycan scaffolds were fashioned, to which equal combined volumes of test substances were added (n=3): 500μl PRP; 375μl PRP + 125μl autologous thrombin (3:1); 455μl PRP + 45μl bovine thrombin (10:1). One ml of DMEM/F12 medium was added to each scaffold and changed completely at 12/24 hours, and 3/10 days, following which release of TGF-β1, PDGF-AB and bFGF were measured using ELISA. Secondly, equal sized collagen/glycosaminoglycan and
Introduction: Platelet rich plasma (PRP) has been hypothesised to be of potential benefit to articular cartilage tissue engineering, through its release of autologous growth factors. The aim of this study was to ascertain whether the addition of thrombin is required to achieve platelet activation and sustained growth factor release in-vitro, when PRP is applied to a collagen based osteochondral scaffold. Methods: Collagen/glycosaminoglycan scaffolds were fashioned, to which equal combined volumes of test substances were added (n=3): 500μl PRP; 375μl PRP + 125μl autologous thrombin (3:1); 455μl PRP + 45μl bovine thrombin (10:1). One ml of DMEM/F12 medium was added to each scaffold and changed completely at 12/24 hours, and 3/10 days, following which release of TGF-β1, PDGF-AB and bFGF were measured using ELISA. Secondly, equal sized collagen/glycosaminogly-can and
Bone void fillers are increasingly being used for dead space management in arthroplasty revision surgery. The aim of this study was to investigate the influence of calcium sulphate bone void filler (CS-BVF) on the damage and wear of total knee arthroplasty using experimental wear simulation. A total of 18 fixed-bearing U2 total knee arthroplasty system implants (United Orthopedic Corp., Hsinchu, Taiwan) were used. Implants challenged with CS-BVF were compared with new implants (negative controls) and those intentionally scratched with a diamond stylus (positive controls) representative of severe surface damage (n = 6 for each experimental group). Three million cycles (MC) of experimental simulation were carried out to simulate a walking gait cycle. Wear of the ultra-high-molecular-weight polyethylene (UHMWPE) tibial inserts was measured gravimetrically, and damage to articulating surfaces was assessed using profilometry.Objectives
Methods
The June 2013 Foot &
Ankle Roundup360 looks at: soft-tissue pain following arthroplasty; pigmented villonodular synovitis of the foot and ankle; ankles, allograft and arthritis; open calcaneal fracture; osteochondral lesions in the longer term; severe infections in diabetic feet; absorbable first ray fixation; and showering after foot surgery.