Abstract
Massive segmental bone defects in long bones remain a considerable clinical challenge and are a source for significant morbidity and prolonged dysfunction for the patient. We demonstrate the successful use of resorbable polylactide membranes as a scaffold for autologous bone graft in the treatment of a 10cm traumatic femoral bone defect.
A 28-year-old male was involved in a motorcycle accident vs. tree at 140k/hr. He sustained a Gustillo grade 3b intercondylar fracture of his right femur, and a 10cm piece of his femoral bone found at the scene was brought to Emergency in a sterile container. He was taken to theatre for debridement and ORIF of the intercondylar fracture, with vacuum dressing cover. Day 5 post injury the patient returned to theatre and the LISS plate was revised to correct the rotation and 3cm shortening. The 10cm cortical defect now present was filled with antibiotic cement (Palacos) and delayed primary closure was performed.
Day 21 post injury the cement spacer was removed and replaced with two polylactide membrane tubes, one within the medullary canal and the other around the outside of the bone. The “neocortical” space thus produced was grafted with cancellous autograft mixed with bone morphogenic protein (OP1, Stryker). The remainder of the post-operative course was uncomplicated and the patient was discharged home 5 days later.
The patient was reviewed at the 6 week and 3 month mark post injury. The femoral defect demonstrated both radiological and clinical union at the 3 month mark and full weight bearing was permitted. His range of motion at that stage was 5 to 95 degrees with no sign of infection.
The use of polylactide membranes as a scaffold in the treatment of segmental long bone defects is an excellent and relatively straightforward technique. Forming a space between the 2 tubes controls cancellous graft to the site of the cortical area where it is required and the polylactide membrane then resorbs over years producing CO2 and water. This case demonstrates that the use of polylactide membranes is safe and effective in the management of segmental long bone defects.