The accuracy and precision of two new methods of model-based
radiostereometric analysis (RSA) were hypothesised to be superior
to a plain radiograph method in the assessment of polyethylene (PE)
wear. A phantom device was constructed to simulate three-dimensional
(3D) PE wear. Images were obtained consecutively for each simulated
wear position for each modality. Three commercially available packages
were evaluated: model-based RSA using laser-scanned cup models (MB-RSA),
model-based RSA using computer-generated elementary geometrical
shape models (EGS-RSA), and PolyWare. Precision (95% repeatability
limits) and accuracy (Root Mean Square Errors) for two-dimensional
(2D) and 3D wear measurements were assessed.Objectives
Methods
Introduction and Objectives: Our aim is to determine the influence that the orientation and position of the components has on
Background.
Purpose: This study was conducted on explanted uni-compartmental prostheses with a flat polyethylene plateau without metal backing. We search for clinical factors influencing
Purpose:
Introduction. It has been shown in vitro that human monocytes can phagocytose submicron
In total knee arthroplasty,
Introduction:
Introduction: The Step Activity Monitor (SAM) is a microprocessor worn on the ankle that measures ambulatory activity in real time. Methods: Activity magnitudes, speed parameters and activity patterns were analyzed in 31 patients with 37 primary total hips. Wear was measured from digitized radiographs using a validated two-dimensional, edge detection-based computer algorithm. Results: On average, patients walked 5.6 hours per day (range: 1.9–9.8); averaging 5,266 gait cycles (range: 1,737–11,805), at 20 cycles/minute (range: 12.7–32.8) with a maximum speed of 63 cycles/minute (range: 45.0–88.0). Fast and very fast walking (30–49 and >
50 cycles/minute) accounted for 9.4% and 4.4% of total walking time. Patients started and stopped walking about 66 times per day (range: 34–113), with about 81 cycles between stops (range: 28.1-200.1) in average active intervals of 5.3 minutes (range: 3.3–10.3). There was no difference in the average number of gait cycles between females and males. However,
Materials and Methods: This study included careful analysis of 24 knees with
Purpose: This study was designed to establish the poly-ethylene wear rates in the Oxford medial unicompert-mental knee replacement. Introduction: The Oxford meniscal bearing knee was introduced as a design to reduce
Introduction:
Introduction: Computer-based wear analysis is currently the most accurate method for determining the in vivo wear rates of polyethylene liners during total hip arthroplasty. MRI of a total hip is emerging as the best method for determining the intra-articular volume of particulate debris. The purpose of this study is to determine if there is a correlation between
Lewinnek's safe zone recommendation to minimise dislocations was a target of 5–25° for anteversion angle and 30–50° for inclination angle. Subsequently, it was demonstrated that mal-positioning of the acetabular cup can also lead to edge loading, liner fracture, and greater conventional
The Low Contact Stress (LCS) mobile-bearing total knee replacement (TKR) was designed to minimize
The purpose of this study was to precisely measure the 10-year
Introduction. Periprosthetic osteolysis following total hip arthroplasty is caused mainly by
Early migration of the acetabular and femoral component after total hip replacement has shown to be a good predictor of implant failure. The only current technique available for this measurement is RSA. An entirely new technique for the measurement of component migration and
Objectives. Bone void fillers are increasingly being used for dead space management in arthroplasty revision surgery. The aim of this study was to investigate the influence of calcium sulphate bone void filler (CS-BVF) on the damage and wear of total knee arthroplasty using experimental wear simulation. Methods. A total of 18 fixed-bearing U2 total knee arthroplasty system implants (United Orthopedic Corp., Hsinchu, Taiwan) were used. Implants challenged with CS-BVF were compared with new implants (negative controls) and those intentionally scratched with a diamond stylus (positive controls) representative of severe surface damage (n = 6 for each experimental group). Three million cycles (MC) of experimental simulation were carried out to simulate a walking gait cycle. Wear of the ultra-high-molecular-weight polyethylene (UHMWPE) tibial inserts was measured gravimetrically, and damage to articulating surfaces was assessed using profilometry. Results. There was no significant difference (p > 0.05) between the wear rate of implants challenged with CS-BVF (3.3 mm. 3. /MC (95% confidence interval (CI) 1.8 to 4.8)) and the wear rate of those not challenged (2.8 mm. 3. /MC (95% CI 1.3 to 4.3)). However, scratching the cobalt-chrome (CoCr) significantly (p < 0.001) increased the wear rate (20.6 mm. 3. /MC (95% CI 15.5 to 25.7)). The mean surface roughness of implants challenged with CS-BVF was equivalent to negative controls both after damage simulation (p = 0.98) and at the conclusion of the study (p = 0.28). Conclusion. When used close to articulating surfaces, a low-hardness, high-purity CS-BVF had no influence on wear. When trapped between the articulating surfaces of a total knee arthroplasty, CS-BVF did not scratch the surface of CoCr femoral components, nor did it increase the wear of UHMWPE tibial inserts compared with undamaged negative controls. Cite this article: R. M. Cowie, S. S. Aiken, J. J. Cooper, L. M. Jennings. The influence of a calcium sulphate bone void filler on the third-body damage and