Advertisement for orthosearch.org.uk
Results 1 - 20 of 60
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 35 - 35
1 Apr 2022
See CC Al-Naser S Fernandes J Nicolaou N Giles S
Full Access

Introduction. Metabolic bone disease encompasses disorders of bone mineralization, abnormal matrix formation or deposition and alteration in osteoblastic and osteoclastic activity. In the paediatric cohort, patients with metabolic bone disease present with pain, fractures and deformities. The aim was to evaluate the use of lateral entry rigid intramedullary nailing in lower limbs in children and adolescents. Materials and Methods. Retrospective review was performed for an 11-year period. Lower limb rigid intramedullary nailing was performed in 27 patients with a total of 63 segments (57 femora, 6 tibiae). Majority of patients had underlying diagnoses of osteogenesis imperfecta or fibrous dysplasia (including McCune Albright disease). Mean age at surgery was 14 years. Indications for surgery included acute fractures, prophylactic stabilisation, previous nonunion and malunion, deformity correction and lengthening via distraction osteogenesis. Results. All fractures healed. Correction of deformity was successfully achieved in all segments. Delayed union occurred in 4 segments in 1 patient and was successfully treated with nail dynamization. Other complications included prominence, cortical penetrance and loosening of locking screws. One patient who had lengthening performed had nonunion and was managed with exchange nailing and adjunctive measures. Conclusions. Rigid intramedullary nailing is very effective in stabilisation and deformity correction of long bones in adolescent patients with pathological bone disease. The technique has low complication rates. We recommend the use of this technique in paediatric units with experience in managing metabolic bone conditions


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_15 | Pages 11 - 11
1 Sep 2016
Al-Naser S Nicolaou N Giles S Fernandes J
Full Access

The aim of the study was to review the effectiveness of rigid IM nailing in stabilisation and deformity correction of lower limb long bones in adolescents with metabolic bone disease which to our knowledge has not been studied before. Medical records and radiographs were retrospectively reviewed looking at indications, deformity correction, number of osteotomies-if needed, bone healing, time to healing and incidence of complications. Between Aug 2010 and Mar 2015 fifteen patients (24 segments) had rigid IM nailing. Ten patients had Osteogenesis Imperfecta, four with McCune Albright syndrome and one with hypophosphatemic rickets. 22 femora and two tibiae were IM nailed. The mean age of the patients was 13.1 (9.6–16.75 years). Eleven out 24 segments were previously rodded. Eight segments were for acute fractures. 13 bones had significant deformities requiring corrective osteotomies. One patient had previous fracture non union. All patients were allowed to partial weight bear immediately postoperatively and were fully mobile six weeks following surgery. Mean follow up was 24 months (3–51 months) post-operatively. All deformities were corrected. All fractures and osteotomies radiologically united. Mean radiological union time was 5.5 months (6 weeks – 11 months). Patients with acute fractures had mean radiological union time of 4 months. Patients who had osteotomies had a mean radiological union time of 7.1 months. The patient with previous non union had BMP at the same time and radiologically healed in 10 months. Two patients had persistent bisphosphonate osteotomy lines but were asymptomatic. One patient had removal of a prominent distal locking screw and one had persistent Trendelenburg gait. Rigid intramedullary nailing is effective in stabilisation and deformity correction of long bones in adolescent patients with brittle bone disease. The technique has a low complication rate. We recommend the use of this technique in paediatric limb reconstruction in managing metabolic bone conditions


Bone & Joint Research
Vol. 1, Issue 2 | Pages 13 - 19
1 Feb 2012
Smith MD Baldassarri S Anez-Bustillos L Tseng A Entezari V Zurakowski D Snyder BD Nazarian A

Objectives

This study aims to assess the correlation of CT-based structural rigidity analysis with mechanically determined axial rigidity in normal and metabolically diseased rat bone.

Methods

A total of 30 rats were divided equally into normal, ovariectomized, and partially nephrectomized groups. Cortical and trabecular bone segments from each animal underwent micro-CT to assess their average and minimum axial rigidities using structural rigidity analysis. Following imaging, all specimens were subjected to uniaxial compression and assessment of mechanically-derived axial rigidity.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 147 - 154
20 Feb 2023
Jia Y Qi X Ma M Cheng S Cheng B Liang C Guo X Zhang F

Aims. Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD. Methods. We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects. Results. Through discovery and replication integrative analysis for BMD GWAS and rSNP annotation database, we identified 36 common BMD-associated genes for BMD irrespective of regulatory elements, such as FAM3C (p. discovery GWAS. = 1.21 × 10. -25. , p. replication GWAS. = 1.80 × 10. -12. ), CCDC170 (p. discovery GWAS. = 1.23 × 10. -11. , p. replication GWAS. = 3.22 × 10. -9. ), and SOX6 (p. discovery GWAS. = 4.41 × 10. -15. , p. replication GWAS. = 6.57 × 10. -14. ). Then, for the 36 common target genes, multiple gene ontology (GO) terms were detected for BMD such as positive regulation of cartilage development (p = 9.27 × 10. -3. ) and positive regulation of chondrocyte differentiation (p = 9.27 × 10. -3. ). Conclusion. We explored the potential roles of rSNP in the genetic mechanisms of BMD and identified multiple candidate genes. Our study results support the implication of regulatory genetic variants in the development of OP. Cite this article: Bone Joint Res 2023;12(2):147–154


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 16 - 16
2 Jan 2024
Lipreri M Pasquarelli A Scelfo D Baldini N Avnet S
Full Access

Osteoporosis is a progressive, chronic disease of bone metabolism, characterized by decreased bone mass and mineral density, predisposing individuals to an increased risk of fractures. The use of animal models, which is the gold standard for the screening of anti-osteoporosis drugs, raises numerous ethical concerns and is highly debated because the composition and structure of animal bones is very different from human bones. In addition, there is currently a poor translation of pre-clinical efficacy in animal models to human trials, meaning that there is a need for an alternative method of screening and evaluating new therapeutics for metabolic bone disorders, in vitro. The aim of this project is to develop a 3D Bone-On-A-Chip that summarizes the spatial orientation and mutual influences of the key cellular components of bone tissue, in a citrate and hydroxyapatite-enriched 3D matrix, acting as a 3D model of osteoporosis. To this purpose, a polydimethylsiloxane microfluidic device was developed by CAD modelling, stereolithography and replica molding. The device is composed by two layers: (i) a bottom layer for a 3D culture of osteocytes embedded in an osteomimetic collagen-enriched matrigel matrix with citrate-doped hydroxyapatite nanocrystals, and (ii) a upper layer for a 2D perfused co-culture of osteoblasts and osteoclasts seeded on a microporous PET membrane. Cell vitality was evaluated via live/dead assay. Bone deposition and bone resorption was analysed respectively with ALP, Alizarin RED and TRACP staining. Osteocytes dendrite expression was evaluated via immunofluorescence. Subsequently, the model was validated as drug screening platform inducing osteocytes apoptosis and administrating standard anti-osteoporotic drugs. This device has the potential to substitute or minimize animal models in pre-clinical studies of osteoporosis, contributing to pave the way for a more precise and punctual personalized treatment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 70 - 70
11 Apr 2023
Domingues I Cunha R Domingues L Silva E Carvalho S Lavareda G Carvalho R
Full Access

Renal Osteodystrophy is a type of metabolic bone disease characterized by bone mineralization deficiency due to electrolyte and endocrine abnormalities. Patients with chronic kidney disease (CKD) are more likely to experience falls and fractures due to renal osteodystrophy and the high prevalence of risk factors for falls. Treatment involves medical management to resolve the etiology of the underlying renal condition, as well as management (and prevention) of pathological fractures. A 66-year-old female patient, with severe osteoporosis and chronic kidney disease undergoing haemodialysis, has presented with multiple fractures along the years. She was submitted to bilateral proximal femoral nailing as fracture treatment on the left and prophylactically due to pathological bone injury on the right, followed by revision of the left nail with a longer one after varus angulation and fracture distal to the nail extremity. Meanwhile, the patient suffered a pathological fracture of the radial and cubital diaphysis and was submitted to conservative treatment with cast, with consolidation of the fracture. Posteriorly, she re-fractured these bones after a fall and repeated the conservative treatment. Clinical management: There is a multidisciplinary approach to manage the chronic illness of the patient, including medical management to resolve the etiology and consequences of her chronic kidney disease, pain control, conservative or surgical fracture management and prevention of falls. The incidence of chronic renal disease is increasing and the patients with this condition live longer than previously and are more physically active. Thus, patients may experience trauma as a direct result of increased physical activity in a setting of weakened pathologic bone. Their quality of life is primarily limited by musculoskeletal problems, such as bone pain, muscle weakness, growth retardation, and skeletal deformity. A multidisciplinary approach is required to treat these patients, controlling their chronic diseases, managing fractures and preventing falls


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 123 - 123
2 Jan 2024
Hofmann S
Full Access

Metabolic bone diseases, such as osteoporosis and osteopetrosis, result from an imbalanced bone remodeling process. In vitro bone models are often used to investigate either bone formation or resorption independently, while in vivo, these processes are coupled. Combining these processes in a co-culture is challenging as it requires finding the right medium components to stimulate each cell type involved without interfering with the other cell type's differentiation. Furthermore, differentiation stimulating factors often comprise growth factors in supraphysiological concentrations, which can overshadow the cell-mediated crosstalk and coupling. To address these challenges, we aimed to recreate the physiological bone remodeling process, which follows a specific sequence of events starting with cell activation and bone resorption by osteoclasts, reversal, followed by bone formation by osteoblasts. We used a mineralized silk fibroin scaffold as a bone-mimetic template, inspired by bone's extracellular matrix composition and organization. Our model supported osteoclastic resorption and osteoblastic mineralization in the specific sequence that represents physiological bone remodeling. We also demonstrated how culture variables, such as different cell ratios, base media, and the use of osteogenic/osteoclast supplements, and the application of mechanical load, can be adjusted to represent either a high bone turnover system or a self-regulating system. The latter system did not require the addition of osteoclastic and osteogenic differentiation factors for remodeling, therefore avoiding growth factor use. Our in vitro model for bone remodeling has the potential to reduce animal experiments and advance in vitro drug development for bone remodeling pathologies like osteoporosis. By recreating the physiological bone remodeling cycle, we can investigate cell-cell and cell-matrix interactions, which are essential for understanding bone physiology and pathology. Furthermore, by tuning the culture variables, we can investigate bone remodeling under various conditions, potentially providing insights into the mechanisms underlying different bone disorders


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 46 - 46
17 Apr 2023
Akhtar R
Full Access

To determine the clinical efficacy of vitamin-D supplementation on pain intensity and functional disability in patients with chronic lower back pain. This prospective cohort study was conducted from 20th March 2017 to 19th March 2019. The inclusion criteria were patients of CLBP aged between 15 to 55 years. Exclusion criteria included all the patients with Disc prolapse, Spinal stenosis, Any signs of neurological involvement, Metabolic bone disease (Hypo- or Hyperparathyroidism) and Chronic kidney disease/Chronic liver disease. Patients were supplemented with 50,000 IU of oral vitamin-D3 every week for 8 weeks (induction phase) and 50,000 IU of oral vitamin-D3 once monthly for 6 months (maintenance phase). Efficacy parameters included pain intensity and functional disability measured by VAS and modified Oswestry disability questionnaire (MODQ) scores at baseline, 2, 3 and 6 months post-supplementation. Vitamin-D3 levels were measured at baseline,2,3 and 6 months. A total of 600 patients were included in the study. The mean age of patients was 44.2 ± 11.92 years. There were 337 (56.2%) male patients while 263 (43.8%) female patients. Baseline mean vitamin-D levels were 13.32 ± 6.10 ng/mL and increased to 37.18 ± 11.72 post supplementation (P < 0.0001). There was a significant decrease in the pain score after 2nd, 3rd& 6th months (61.7 ± 4.8, 45.2 ± 4.6 & 36.9 ± 7.9, respectively) than 81.2 ± 2.4 before supplementation (P < 0.001). The modified Oswestry disability score also showed significant improvement after 2nd, 3rd & 6th months (35.5, 30.2 & 25.8, respectively) as compared to baseline 46.4 (P < 0.001). About 418 (69.7%) patients attained normal levels after 6 months. Vitamin-D supplementation in chronic lower back pain patients may lead to improvement in pain intensity and functional ability


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 17 - 17
1 Dec 2022
Smit K L'Espérance C Livock H Tice A Carsen S Jarvis J Kerrigan A Seth S
Full Access

Olecranon fractures are common injuries representing roughly 5% of pediatric elbow fractures. The traditional surgical management is open reduction and internal fixation with a tension band technique where the pins are buried under the skin and tamped into the triceps. We have used a modification of this technique, where the pins have been left out of the skin to be removed in clinic. The purpose of the current study is to compare the outcomes of surgically treated olecranon fractures using a tension-band technique with buried k-wires (PINS IN) versus percutaneous k-wires (PINS OUT). We performed a retrospective chart review on all pediatric patients (18 years of age or less) with olecranon fractures that were surgically treated at a pediatric academic center between 2015 to present. Fractures were identified using ICD-10 codes and manually identified for those with an isolated olecranon fracture. Patients were excluded if they had polytrauma, metabolic bone disease, were treated non-op or if a non-tension band technique was used (ex: plate/screws). Patients were then divided into 2 groups, olecranon fractures using a tension-band technique with buried k-wires (PINS IN) and with percutaneous k-wires (PINS OUT). In the PINS OUT group, the k-wires were removed in clinic at the surgeon's discretion once adequate fracture healing was identified. The 2 groups were then compared for demographics, time to mobilization, fracture healing, complications and return to OR. A total of 35 patients met inclusion criteria. There were 28 patients in the PINS IN group with an average age of 12.8 years, of which 82% male and 43% fractured their right olecranon. There were 7 patients in the PINS OUT group with an average age of 12.6 years, of which 57% were male and 43% fractured their right olecranon. All patients in both groups were treated with open reduction internal fixation with a tension band-technique. In the PINS IN group, 64% were treated with 2.0 k-wires and various materials for the tension band (82% suture, 18% cerclage wire). In the PINS OUT group, 71% were treated with 2.0 k-wires and all were treated with sutures for the tension band. The PINS IN group were faster to mobilize (3.4 weeks (range 2-5 weeks) vs 5 weeks (range 4-7 weeks) p=0.01) but had a significantly higher complications rate compared to the PINS OUT group (6 vs 0, p =0.0001) and a significantly higher return to OR (71% vs 0%, p=0.0001), mainly for hardware irritation or limited range of motion. All fractures healed in both groups within 7 weeks. Pediatric olecranon fractures treated with a suture tension-band technique and k-wires left percutaneously is a safe and alternative technique compared to the traditional buried k-wires technique. The PINS OUT technique, although needing longer immobilization, could lead to less complications and decreased return to the OR due to irritation and limited ROM


Bone & Joint Research
Vol. 9, Issue 8 | Pages 524 - 530
1 Aug 2020
Li S Mao Y Zhou F Yang H Shi Q Meng B

Osteoporosis (OP) is a chronic metabolic bone disease characterized by the decrease of bone tissue per unit volume under the combined action of genetic and environmental factors, which leads to the decrease of bone strength, makes the bone brittle, and raises the possibility of bone fracture. However, the exact mechanism that determines the progression of OP remains to be underlined. There are hundreds of trillions of symbiotic bacteria living in the human gut, which have a mutually beneficial symbiotic relationship with the human body that helps to maintain human health. With the development of modern high-throughput sequencing (HTS) platforms, there has been growing evidence that the gut microbiome may play an important role in the programming of bone metabolism. In the present review, we discuss the potential mechanisms of the gut microbiome in the development of OP, such as alterations of bone metabolism, bone mineral absorption, and immune regulation. The potential of gut microbiome-targeted strategies in the prevention and treatment of OP was also evaluated. Cite this article: Bone Joint Res 2020;9(8):524–530


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 4 - 4
1 Nov 2021
Tarantino U
Full Access

Cigarette smoking has a negative impact on the skeletal system by reducing bone mass and increasing the risk of fractures through its direct or indirect effects on bone remodeling. Recent evidence shows that smoking causes an imbalance in bone turnover, making bone vulnerable to osteoporosis and fragility fractures. In addition, cigarette smoking is known to have deleterious effects on fracture healing, as a positive correlation has been shown between the daily number of cigarettes smoked and years of exposure to smoking, although the underlying mechanisms are not fully understood. Smoking is also known to cause several medical and surgical complications responsible for longer hospital stays and a consequent increase in resource consumption. Smoking cessation is, therefore, highly advisable to prevent the onset of metabolic bone disease. However, some of the consequences appear to continue for decades. Based on this evidence, the aim of our work was to assess the impact of smoking on the skeletal system, particularly bone fractures, and to identify the pathophysiological mechanisms responsible for the impairment of fracture healing. Because smoking represents a major public health problem, understanding the association between cigarette smoking and the occurrence of bone disease is necessary in order to identify potential new targets for intervention


Bone & Joint Research
Vol. 5, Issue 6 | Pages 253 - 262
1 Jun 2016
Liu H Li W Liu YS Zhou YS

Objectives. This study aims to evaluate if micro-CT can work as a method for the 3D assessment and analysis of cancellous bone by comparing micro-CT with undecalcified histological sections in OVX rats. Methods. The mandible and tibia of sham, ovariectomised (OVX) and zoledronate-injected ovariectomised (OVX-ZOL) rats were assessed morphometrically. Specimens were scanned by micro-CT. Undecalcified histological sections were manufactured from the specimen scanned by micro-CT and stained with haematoxylin and eosin. Bivariate linear regressions and one-way analysis of variance were undertaken for statistics using SPSS 16.0.1 software. Results. There were highly significant correlations between undecalcified histological sections and micro-CT for all parameters (bone volume density (BV/TV), bone surface density (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp))in the mandible and tibia. Bone histomorphometric parameters analysed by both methods exhibited significant differences among sham, OVX, and OVX-ZOL groups. There were significant correlations between mandible and tibia in BV/TV, BS/BV, and Tb.Sp. Conclusions. Micro-CT is a complementary tool to histological sections in basic research that could improve our understanding of bone histomorphometry. The mandible can be used as an effective site to assess bone morphometry of OVX or metabolic bone disease rat models. Cite this article: H. Liu, W. Li, Y. S. Liu, Y. S. Zhou. Bone micro-architectural analysis of mandible and tibia in ovariectomised rats: A quantitative structural comparison between undecalcified histological sections and micro-CT. Bone Joint Res 2016;5:253–262


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 20 - 20
1 Jun 2018
Springer B
Full Access

Periprosthetic fractures around the femur during and after total hip arthroplasty (THA) remain a common mode of failure. It is important therefore to recognise those factors that place patients at increased risk for development of this complication. Prevention of this complication, always trumps treatment. Risk factors can be stratified into: 1. Patient related factors; 2. Host bone and anatomical considerations; 3. Procedural related factors; and 4. Implant related factors. Patient Factors. There are several patient related factors that place patients at risk for development of a periprosthetic fracture during and after total hip arthroplasty. Metabolic bone disease, particularly osteoporosis increases the risk of periprosthetic fracture. In addition, patients that smoke, have long term steroid use or disuse, osteopenia due to inactivity should be identified. A metabolic bone work up and evaluation of bone mineralization with a bone densitometry test can be helpful in identifying and implementing treatment prior to THA. Pre-operative Host Bone and Anatomic Considerations. In addition to metabolic bone disease the “shape of the bone” should be taken into consideration as well. Dorr has described three different types of bone morphology (Dorr A, B, C), each with unique characteristics of size and shape. It is important to recognise that not one single cementless implant may fit all bone types. The importance of templating a THA prior to surgery cannot be overstated. Stem morphology must be appropriately matched to patient anatomy. Today, several types of cementless stem designs exist with differing shape and areas of fixation. It is important to understand via pre-operative templating which stem works best in what situation. Procedural Related Factors. There has been a resurgence in interest in the varying surgical approaches to THA. While the validity and benefits of each surgical approach remains a point of debate, each approach carries with it its own set of risks. Several studies have demonstrated increased risk of periprosthetic fractures during THA with the use of the direct anterior approach. Risk factors for increased risk of periprosthetic fracture may include obesity, bone quality and stem design. Implant Related Factors. As mentioned there are several varying cementless implant shapes and sizes that can be utilised. There is no question that cementless fixation remains the most common mode of fixation in THA. However, one must not forget the role of cemented fixation in THA. Published results on long term fixation with cemented stems are comparable if not exceeding those of press fit fixation. In addition, the literature is clear that cemented fixation in the elderly hip fracture patient population is associated with a lower risk of periprosthetic fracture and lower risk of revision. The indication and principles of cemented stem fixation in THA should not be forgotten


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 18 - 18
1 Dec 2020
Paiva STS O’Brien FJ Murphy CM
Full Access

Bone remodelling is mediated through the synchronism of bone resorption (catabolism) by osteoclasts and bone formation (anabolism) by osteoblasts. Imbalances in the bone remodelling cycle represent an underling cause of metabolic bone diseases such as osteoporosis, where bone resorption exceeds formation (1). Current therapeutic strategies to repair osteoporotic bone fractures focus solely in targeting anabolism or supressing catabolism (2). However, these therapeutics do not reverse the structural damage present at the defect site, ultimately leading to impaired fracture healing, making the repair of osteoporotic fractures particularly challenging in orthopaedics. Herein, we focus on investigating a combined versatile pro-anabolic and anti-catabolic effect of Magnesium (Mg. 2+. ) to modulate bone cell behaviour (3), to develop an engineered biomimetic bio-instructive biomaterial scaffold structurally designed to enhance bone formation while impeding pathological osteoclast resorption activities to facilitate better bone healing and promote repair. Pre-osteoblasts MC3T3-E1 (OBs) and osteoclasts progenitors RAW 264.7 (OCs) cell lines were cultured in growth media exposed to increasing concentrations of MgCl. 2. (0, 0.5, 1, 10, 25 and 50mM) and the optimal concentration to concurrently promote the differentiation of OBs and inhibit the differentiation or funtion of RANKL-induced OCs was assessed. We next used Fluorescence Lifetime Imaging Microscopy to investigate changes in the metabolic pathways during OBs and OCs differentiation when exposed to increasing MgCl. 2. concentrations. We developed a range of magnesium-incorporated collagen scaffolds to permit the spatiotemporal release of Mg. 2+. within the established therapeutic window, and to investigate the behaviour of bone cells in a 3D environment. In our results, we reported an increase in the expression of the bone formation markers osteocalcin and osteopontin for OBs exposed to 10mM MgCl. 2. , and a significant downregulation of the osteoclast-specific markers TRAP and cathepsin K in RANKL-induced OCs differentiation when exposed to 25mM MgCl. 2. Moreover, 25mM MgCl. 2. induced changes in the energy metabolism of OCs from a predominantly oxidative phosphorylation towards a more glycolytic pathway suggesting a regulatory effect of Mg. 2+. in the underlying mechanisms of osteoclasts formation and function. The developed porous collagen-magnesium scaffolds significantly reduced the expression of early osteoclastogenic markers RANK and NFkB, and an elevated expression of the osteogenic markers Runx2 and Col1A1 was reported after 7 days. Our research to date has provided evidences to demonstrate the potential of Mg. 2+. to concurrently enhance osteogenesis while inhibiting osteoclastogenesis in vitro, potentially introducing new targets for developing therapies to repair osteoporotic bone fractures


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 36 - 36
1 Aug 2017
Rosenberg A
Full Access

Extra-articular deformity may be present in patients requiring TKA. Underlying causes include trauma, metabolic bone disease, congenital deformity, or prior osteotomy. Patients with intra-articular deformity have a combination of intra-articular bone loss and concomitant ligament contraction which can be managed in the standard fashion. In these cases establishing appropriate limb alignment and management of bone loss coincide well with the standard ligament balancing employed to provide a stable knee. However, if extra-articular deformity is not corrected extra-articularly, it must be corrected by a compensatory distal femoral or proximal tibial resection to reproduce appropriate limb alignment. Complex instabilities may result from this type of wedge resection because it occurs between the proximal and distal attachments of the collateral ligaments and so produces asymmetrical ligament length alterations. Femoral compensatory wedge resection for extra-articular deformity produces extension instability without affecting the flexion gap and so femoral deformities are POTENTIALLY more difficult to correct than tibial deformities where the compensatory tibial cut influences flexion AND extension equally. Lack of access to the intramedullary canal (as well as increased complexity of producing appropriately placed bone cuts) may be managed with computer guidance or patient specific instruments. The closer a deformity is to the knee, the greater its importance and the effect on the surgical correction. This is a directly proportional relationship, so that as the apex of the deformity moves from juxta-articular to more distant, the amount of corrective wedge needed to re-align the limb decreases proportionally. Rotatory deformities most commonly effect extensor mechanism tracking. The effect is similar to any other deformity in that proximity to the knee and increases the likelihood that it will have a significant local effect. In general, these deformities may be clinically, and radiographically more subtle and so must be searched for. They should be managed by restoring normal rotational parameters of the bone or by appropriate compensation of component rotation relative to the bone. As the need for prosthetic constraint increases due to ligament imbalance or deficiency, intramedullary stems may be required. Their use may be compromised by the presence of the deformity. The younger the patient and the more severe the deformity the more likely I am to treat the deformity by correction at the site of the deformity rather than compensating with abnormal bone resections. The older the patient and the milder the deformity (or the amount of correction required) the more intra-articular correction +/− increased TKA constraint is feasible


To report the case of an asymptomatic simultaneous bilateral neck of femur fracture following vitamin D deficiency which was missed, misdiagnosed and treated for coexisting severe bilateral osteoarthritis knee. A male aged 62 years presented with severe osteoarthritis of both knee joints confining him to bed about eight weeks prior to presentation. The patient did not have any complaints pertaining to his hip joints/axial skeleton. Examination of the hip joints revealed only crepitus with absence of straight leg rising. Radiological survey showed bilateral displaced fracture neck of femur. He had elevated serum alkaline phosphatase; 119IU/L(N:39–117IU/L), decreased Serum 25 (OH) Vit D level;6.03ng/ml(N:7.6–75ng/ml), decreased spot urinary calcium;78mg/day(N:100–300mg/day) with normal serum calcium, phosphorus and highly raised parathormone levels;142.51pg/ml(N:12–72pg/ml). Tc-99 Bone scan showed increased radiotracer uptake in both the hip joints and knee joints. Bone Mineral Density was in favour of osteoporosis. Biopsy fromthe heads of both femurs also revealed osteoporosis. Bilateral staged total hip arthroplasty was done and he was put on Vitamin D replacement therapy. Patient was on regular monthly follow-up for intial one year and three monthly follow-up thereafter. At present with three year follow-up patient is community ambulant with a walking frame. Despite medical advice patient had denied total knee arthroplasty for osteoarthritis of his knee joints. Asymptomatic simultaneous bilateral neck of femur fracture is a rare injury and poses a diagnostic challenge to the treating orthopaedic surgeon with its bizarre clinical picture. Similar presentation of metabolic bone disease can be easily missed without a proper screening, keeping in mind a high index of suspicion for the above disorders. Besides proper clinical examination of both hip and knee joint should be performed in patients presenting with bilateral knee pain. A good functional outcome may be achieved with prompt surgical intervention and medical treatment


Bone & Joint Open
Vol. 5, Issue 10 | Pages 879 - 885
14 Oct 2024
Moore J van de Graaf VA Wood JA Humburg P Colyn W Bellemans J Chen DB MacDessi SJ

Aims

This study examined windswept deformity (WSD) of the knee, comparing prevalence and contributing factors in healthy and osteoarthritic (OA) cohorts.

Methods

A case-control radiological study was undertaken comparing 500 healthy knees (250 adults) with a consecutive sample of 710 OA knees (355 adults) undergoing bilateral total knee arthroplasty. The mechanical hip-knee-ankle angle (mHKA), medial proximal tibial angle (MPTA), and lateral distal femoral angle (LDFA) were determined for each knee, and the arithmetic hip-knee-ankle angle (aHKA), joint line obliquity, and Coronal Plane Alignment of the Knee (CPAK) types were calculated. WSD was defined as a varus mHKA of < -2° in one limb and a valgus mHKA of > 2° in the contralateral limb. The primary outcome was the proportional difference in WSD prevalence between healthy and OA groups. Secondary outcomes were the proportional difference in WSD prevalence between constitutional varus and valgus CPAK types, and to explore associations between predefined variables and WSD within the OA group.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_17 | Pages 1 - 1
1 Dec 2015
Woods L Maempel J Beattie N Roberts S Ralston S
Full Access

Paget's disease of bone (PDB) is the second most common metabolic bone disease. Osteoarthritis (OA) affects one-third of patients with PDB. The incidence of THR (total hip replacement) and TKR (total knee replacement) is 3.1- and 1.7-fold higher in PDB patients compared to non-affected age-matched controls. No large studies or joint registry reports exist describing the outcomes following THR or TKR in patients with PDB. The objectives of this study were to investigate the outcomes following THR and TKR in patients with PDB using national joint registry data. 144 THR and 43 TKR were identified using the Scottish Arthroplasty Project from 1996–2013. For THR, the most common early post-operative surgical complications were haematoma formation (1.4%), and surgical site infection (1.4%). The absolute incidence during follow-up of dislocation was 2.8%, and revision hip arthroplasty was performed in 2.8% of cases. Implant survival of the primary prosthesis was 96.3% (CI: 92.8 – 99.8) at 10-years, and patient survival was 50.0% (39.6 – 60.4) at 10-years. For TKR, the most common early post-operative surgical complication was surgical site infection (2.3%). The absolute incidence during follow-up of revision knee arthroplasty was 4.7%. On survival analysis, implant survival of the primary prosthesis was 94.5% (CI: 87.1 – 100) at 10-years, and patient survival was 38.3% (16.7 – 59.9) at 10-years. This is the largest reported series of outcomes following primary THR and TKR in patients with PDB. PDB patients are not at increased risk of surgical complications following primary THR or TKR compared to non-PDB patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 34 - 34
1 Nov 2016
Rosenberg A
Full Access

Extra-articular deformity may be present in patients requiring TKA. Underlying causes include trauma, metabolic bone disease, congenital deformity, or prior osteotomy. Patients with intra-articular deformity can have a combination of intra-articular bone loss and concomitant ligament contraction which can be managed in the standard fashion. In these cases establishing appropriate limb alignment and management of bone loss coincide well with the standard ligament balancing employed to provide a stable knee. However, if extra-articular deformity is not corrected extra-articularly, it must be corrected by a compensatory distal femoral or proximal tibial resection to reproduce appropriate limb alignment. Complex instabilities may result from this type of wedge resection because it occurs between the proximal and distal attachments of the collateral ligaments and so produces asymmetrical ligament length alterations. Femoral compensatory wedge resection for extra-articular deformity produces extension instability without affecting the flexion gap and so femoral deformities are POTENTIALLY more difficult to correct than tibial deformities where the compensatory tibial cut influences flexion AND extension equally. Lack of access to the intramedullary canal (as well as increased complexity of producing appropriately placed bone cuts) may be managed with computer guidance or patient specific instruments. The closer a deformity is to the knee, the greater its importance and the effect on the surgical correction. This is a directly proportional relationship, so that as the apex of the deformity moves from juxta-articular to more distant, the amount of corrective wedge needed to re-align the limb decreases proportionally. Rotatory deformities are complex and most commonly effect extensor mechanism tracking. In general the effect is similar to any other deformity in that proximity to the knee increases the likelihood that it will have a significant local effect. In general, these deformities are clinically, and radiographically more subtle and so must be searched for. They should be managed by an attempt to restore normal rotational parameters of the bone itself or appropriate compensation of component rotation in relation to the bone. As prosthetic constraint increases one may need to use intramedullary stems. Their use may be compromised by the deformity. Finally, the younger the patient and the more severe the deformity the more likely I am to treat the deformity by correction at the site of the deformity rather than compensating with abnormal bone resections. The older the patient and the milder the deformity (or the amount of wedge correction required) the more likely I am to manage the deformity with intra-articular correction and increased TKA constraint


Bone & Joint Open
Vol. 4, Issue 7 | Pages 507 - 515
6 Jul 2023
Jørgensen PB Jakobsen SS Vainorius D Homilius M Hansen TB Stilling M

Aims

The Exeter short stem was designed for patients with Dorr type A femora and short-term results are promising. The aim of this study was to evaluate the minimum five-year stem migration pattern of Exeter short stems in comparison with Exeter standard stems.

Methods

In this case-control study, 25 patients (22 female) at mean age of 78 years (70 to 89) received cemented Exeter short stem (case group). Cases were selected based on Dorr type A femora and matched first by Dorr type A and then age to a control cohort of 21 patients (11 female) at mean age of 74 years (70 to 89) who received with cemented Exeter standard stems (control group). Preoperatively, all patients had primary hip osteoarthritis and no osteoporosis as confirmed by dual X-ray absorptiometry scanning. Patients were followed with radiostereometry for evaluation of stem migration (primary endpoint), evaluation of cement quality, and Oxford Hip Score. Measurements were taken preoperatively, and at three, 12, and 24 months and a minimum five-year follow-up.