Purpose. The purpose of this study was to compare intercompartmental loads and the proportion of knees with unbalanced loads after tensiometer-assisted balancing (TAB) between cruciate retaining (CR) and posterior stabilized (PS) total knee arthroplasty (TKA). Materials and Methods. Forty-five CR and 45 PS TKAs using a single prosthesis were prospectively evaluated. The intercompartmental loads in 10°, 45°, and 90° of knee flexion after TAB were evaluated; the proportions of load imbalance (medial load – lateral load >15 lbs) in each flexion angle after TAB were investigated. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of TAB were calculated, with the sensor-balanced loads considered the reference standard. Results. The average loads of the medial compartment in CR TKA were greater than the adequate load (55 lbs) in every knee flexion angle; those of PS TKA were <55 lbs. The proportions of the load imbalance were >50% in every knee flexion angle in both CR and PS TKA (CR >64.4% and PS >57.8%), and there was no difference between the groups (p > 0.515). The sensitivity, specificity, PPV, and NPV of TAB were 91.7%, 66.7%, 57.9% and 94.1%, respectively, in CR, and 100%, 62.5%, 40 %, and 100%, respectively, in PS TKA. Conclusions. The appropriate load balancing from the tensiometer seemed to be difficult in both CR and PS TKA. The intraoperative
INTRODUCTION. Soft tissue balancing in knee arthroplasty remains an art. To make it a science reliable quantification and reference values for soft tissue tension and contact loads are necessary. This study intends to prove the concept of a compartmental load safe target zone as a clinical tool for balancing total knee arthroplasties by studying the relationship between post- balancing compartmental load distribution and patient satisfaction at 6 months. MATERIALS AND METHODS. In this prospective non-randomised clinical series of 102 patients (110 knees), medial and lateral loads were recorded intra-operatively using a tibial liner
Aims. It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to
The course of secondary fracture healing typically consists of four major phases including inflammation, soft and hard callus formation, and bone remodeling. Callus formation is promoted by mechanical stimulation, yet little is known about the healing tissue response to strain stimuli over shorter timeframes on hourly and daily basis. The aim of this study was to explore the hourly, daily and weekly variations in bone healing progression and to analyze the short-term response of the repair tissue to well-controlled mechanical stimulation. A system for continuous monitoring of fracture healing was designed for implantation in sheep tibia. The experimental model was adapted from Tufekci et al. 2018 and consisted of 3 mm transverse osteotomy and 30 mm bone defect resulting in an intermediate mobile bone fragment in the tibial shaft. Whereas the distal and proximal parts of the tibia were fixed with external fixator, the mobile fragment was connected to the proximal part via a second, active fixator. A linear actuator embedded in the active fixator moved the mobile fragment axially, thus stimulating mechanically the tissue in the osteotomy gap via well-controlled displacement being independent from the sheep's functional weightbearing. A
Introduction & Aims. Over the last decade, sensor technology has proven its benefits in total knee arthroplasty, allowing the quantitative assessment of tension in the medial and lateral compartment of the tibiofemoral joint through the range of motion (VERASENSE, OrthoSensor Inc, FL, USA). In reversal total shoulder arthroplasty, it is well understood that stability is primarily controlled by the active and passive structures surrounding the articulating surfaces. At current, assessing the tension in these stabilizing structures remains however highly subjective and relies on the surgeons’ feel and experience. In an attempt to quantify this feel and address instability as a dominant cause for revision surgery, this paper introduces an intra-articular
In the course of uneventful secondary bone healing, a fracture gap is progressively overgrown by callus which subsequently calcifies and remodels into new bone. It is widely accepted that callus formation is promoted by mechanical stimulation of the tissue in the fracture gap. However, the optimal levels of the interfragmentary motion's amplitude, frequency and timing remain unknown. The aim of this study was to develop an active fixation system capable of installing a well-controlled mechanical environment in the fracture gap with continuous monitoring of the bone healing progression. The experimental model was adapted from Tufekci et al. 2018 and required creation of a critical size defect and an osteotomy in a sheep tibia. They were separated by a mobile bone fragment. The distal and proximal parts of the tibia were fixed with an external fixator, whereas the mobile fragment was connected to the proximal part with an active fixator equipped with a linear actuator to move it axially for mechanical stimulation of the tissue in the fracture gap. This configuration installed well-controlled mechanical conditions in the osteotomy, dependent only on the motion of the active fixator and shielded from the influence of the sheep's functional weightbearing. A
Introduction. Soft tissue balancing in total knee arthroplasty surgery may prove necessary to elevate patient satisfaction and functional outcome beyond the current fair average. A new generation of contact
Purpose. The purpose of the present study was to evaluate the intercompartmental loads with a sensor placed on implants after conventional gap balancing during total knee arthroplasty (TKA) with a tensiometer. Methods. Fifty sensor-assisted TKA procedures were performed prospectively between August and September 2018 with a cruciate-retaining prosthesis. After applying a modified measured technique, conventional balancing between the resected surfaces was achieved. The equal and rectangular flexion–extension gaps were confirmed using a tensiometer. Then, the load distribution was evaluated with a sensor. Results. The average load of the medial compartment was greater than that of the lateral compartment in both the flexion and extension of the knee. The proportion of medial–tight coronal load imbalance (medial load – lateral load ≥ 15 lb) was 50% in the extension and 28% in the flexion positions, respectively (p = 0.035). The loads in each medial and lateral compartment increased with extension of the knee; of note, the amount of increase was higher in the medial compartment (9.7 lb vs. 4.0 lb; p < 0.001). The proportion of the extension–tight sagittal load imbalance (extension load – flexion load ≥ 15lbs) was 34% in the medial compartment and 4% in the lateral compartment (p < 0.001). Conclusions. Coronal and sagittal load imbalances existed as determined by the sensor even after the achievement of appropriate conventional gap balance. The use of an intraoperative
Introduction. Total hip arthroplasty (THA) is a commonly performed procedure to relieve arthritis or traumatic injury. However, implant failure can occur from implant loosening or crevice corrosion as a result of inadequate seating of the femoral head onto the stem during implantation. There is no consensus—either by manufacturers or by the surgical community—on what head/stem assembly procedure should be used to maximize modular junction stability. Furthermore, the role of “off-axis” loads—loads not aligned with the stem taper axis—during assembly may significantly affect modular junction stability, but has not been sufficiently evaluated. Objective. The objective of this study was to measure the three-dimensional (3D) head/stem assembly loads considering material choice—metal or ceramic—and the surgeon experience level. Methods. A total of 29 surgeons of varying levels (Attending, Fellow, Resident) were recruited and asked to perform a benchtop, head/stem assembly using an instrumented apparatus simulating a procedure in the operating room (Figure 1). The apparatus comprised of a 12/14 stem taper attached to a 3D
Introduction. Improper seating during head/stem assembly can lead to unintended micromotion between the femoral head and stem taper—resulting in fretting corrosion and implant failure. There is no consensus—either by manufacturers or by the surgical community—on what head/stem taper assembly method maximizes modular junction stability in total hip arthroplasty (THA). A 2018 clinical survey found that orthopedic surgeons prefer applying one strike or three, subsequent strikes when assembling head/stem taper. However, it has been suggested that additional strikes may lead to decreased interference. Additionally, the taper surface finish—micro-grooves—has been shown to affect taper interference and may be influenced by assembly method. Objective. The objective of this study was to employ a novel, micro-grooved finite element (FEA) model of the hip taper interface and assess the role of head/stem assembly method—one vs three strikes—on modular taper junction stability. Methods. A two-dimensional, axisymmetric model representative of a CoCrMo femoral head taper and Ti6Al4V stem taper was created using median geometrical measurements taken from over 100 retrieved implants. Surface finish—micro-grooves—of the head/stem taper were modeled using a sinusoidal function with amplitude and period corresponding to median retrieval measurements of micro-groove height and spacing, respectively (“smooth” stem taper: height=2µm, spacing=50µm; “rough” stem taper: height=11µm, spacing=200µm; head taper: height=2µm, spacing=50µm). All models had a 3’ (0.05°), proximal-locked angular mismatch between the tapers. To simulate modular assembly during surgery, multiple dynamic loads (4kN, 8kN, and 12kN) were applied to the femoral head taper as either one or three sequence of strikes. The input load profile (Figure 1) used for both cases was collected from surgeons assembling an experimental setup with a three-dimensional
Introduction and Aims. Sensor technology is seeing increased utility in joint arthroplasty, guiding surgeons in assessing the soft tissue envelope intra-operatively (OrthoSensor, FL, USA). Meanwhile, surgical navigation systems are also transforming, with the recent introduction of inertial measurement unit (IMU) based systems no longer requiring optical trackers and infrared camera systems in the operating room (i.e. OrthAlign, CA, USA). Both approaches have now been combined by embedding an IMU into an intercompartmental
Introduction & Aims. Studies have shown that as many as 1 in 5 patients is dissatisfied following total knee replacement (TKA). There has also been a large reported disparity between surgeon and patient perception of clinical “success”. It has long been shown that surgeon opinion of procedural outcomes is inflated when compared with patient-reported outcomes. Additionally, TKA recipients have consistently reported higher pain levels, greater inhibition of function, and lower satisfaction than total hip replacement (THA) recipients. It is imperative that alternative methods be explored to improve TKA patient satisfaction. Therefore, the purpose of this study was to determine whether or not patients with a balanced TKA, as measured using intraoperative sensors, exhibit better clinical outcomes. Methods. 310 patients scheduled for TKA surgery were enrolled in a 6 center, randomized controlled trial, resulting in two patient groups: a sensor-guided TKA group and a surgeon-guided TKA group. Intraoperative
Introduction. Improper seating during head/stem assembly can lead to unintended micromotion between the femoral head and stem taper—resulting in fretting corrosion and implant failure. 1. There is no consensus—either by manufacturers or by the surgical community—on what head/stem taper assembly method maximizes modular junction stability in total hip arthroplasty (THA). A 2018 clinical survey. 2. found that orthopedic surgeons prefer applying one strike or three, subsequent strikes when assembling head/stem taper. However, it has been suggested that additional strikes may lead to decreased interference strength. Additionally, the taper surface finish—micro-grooves—has been shown to affect taper interference strength and may be influenced by assembly method. The objective of this study was to employ a novel, micro-grooved finite element (FEA) model of the hip taper interface and assess the role of head/stem assembly method—one vs three strikes—on modular taper junction stability. Methods. A two-dimensional, axisymmetric FEA model representative of a CoCrMo femoral head taper and Ti6Al4V stem taper was created using median geometrical measurements taken from over 100 retrieved implants. 3. Surface finish—micro-grooves—of the head/stem taper were modeled using a sinusoidal function with amplitude and period corresponding to retrieval measurements of micro-groove height and spacing, respectively. Two stem taper micro-groove geometries— “rough” and “smooth”—were modeled corresponding to the median and 5. th. percentile height and spacing measurements from retrievals. All models had a 3' (0.05°), proximal-locked angular mismatch between the tapers. To simulate implant assembly during surgery, multiple dynamic loads (4kN, 8kN, and 12kN) were applied to the femoral head taper in a sequence of one or three strikes. The input load profile (Figure 1) used for both cases was collected from surgeons assembling an experimental setup with a three-dimensional
Although the pre- or intraoperative flexion angle in TKA has been commonly considered as a predictor of the postoperative flexion angle, patients with well flexion intraoperatively cannot necessarily obtain deep flexion angle postoperatively. The reason why inconsistencies remains has been unsolved. The intraoperative compressive force between femoral and tibial components has the advantage of the sequential changes during knee motion. However, the relationship between the compressive force and the postoperative ROM has not yet been clarified. We aimed to evaluate the intraoperative femorotibial compressive force during passive knee motion, and determine the relationship between the compressive force and the postoperative flexion angle. A total of 11 knees in 10 patients who underwent primary cruciate-retaining (CR) TKA (The FINE Total Knee System; Teijin Nakashima Medical Co., Ltd., Okayama, Japan) for osteoarthritis were studied retrospectively, with a mean age of 76 years via a measured resection technique. We developed a customized measurement device mimicking the tibial component with this platform of six
Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters. We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.Aims
Methods
Despite reverse total shoulder arthroplasty (RTSA) being primarily indicated for massive rotator cuff tears, it is often possible to repair portions of the infraspinatus and subscapularis of patients undergoing this procedure. However, there is disagreement regarding whether these tissues should be repaired, as their effects remain unclear. Therefore, we investigated the effects of rotator cuff repair and changes in humeral and glenosphere lateralisation (HLat & GLat) on deltoid and joint loading. Six shoulders were tested on an in-vitro muscle driven active motion simulator. Cuff tear arthropathy was simulated in each specimen, which was then implanted with a custom adjustable RTSA fitted with a six axis
Fracture during total hip arthroplasty occurs partly because the acquisition of fixation at the time of stem implantation depends on the operator's experience and sensation due to the absence of definite criteria. Therefore, an objective evaluation method to determine whether the stem has been appropriately implanted is necessary. We clarified the relationship between the hammering sound frequency during stem implantation and internal stress in a femoral model, and evaluated the possible usefulness of hammering sound frequency analysis for preventing intraoperative fracture. Three types of cementless stem were used. Orthopedists performed stem insertion using a procedure similar to that employed in routine operation. Stress was estimated by finite element analysis using the hammering force calculated from the
Purpose: Clinical gait analysis is considered the “gold standard” for evaluating individual walking patterns. However, in conditions where an individual may exhibit transient voluntary control of gait (such as idiopathic toe walking), their walking pattern in a gait lab may not accurately reflect their gait during daily activities. An accurate assessment of such patients’ functional gait is essential in determining appropriate management options and response to treatment. Therefore, a battery-powered, wireless data acquisition system (WDAS) was developed to record daily functional walking patterns. The goal of the present study was to compare the tilt angle and load data obtained from the WDAS with those measured by gait lab equipment in a sample of healthy adult volunteers. Method: Seven members of the research team participated in our validation study. Following informed consent, the WDAS was attached to the dorsum (laces) of each subject’s right shoe. Two thin film
We have developed a new type of knee prosthesis which is capable to make 180° knee flexion, and have designated it as Complete flexion knee (CFK). Since the kinematics and kinetics of knee prosthesis vary depending not only on its articulating surface shapes but also on the stiffness of soft tissues, its performance should be assessed under various kinds of lower limb activities. The objective of this study is to perform simulation analysis of various lower limb activities to evaluate the performance of CFK using the 2D and the 3D mathematical models. Kinematic analyses using X-ray picture or stress analyses using FEM are extensive however, kinematic analyses can not introduce stresses and FEM can not introduce kinematics. Mathematical model analyses can introduce vital information about kinematics and kinetics at the same time. First, we carried out an in-vitro experiment using cadaver knee under the condition of passive knee flexion-extension. After that, we performed a simulation using the same parameter variables as the in-vitro experiment in order to assess the validity of our 2D and 3D models by comparing the results about the joint contact forces and kinematics with those from the experiment. In the in-vitro experiment, the femoral bone of a cadaver knee was fixed on a jig. In order to secure the tibiofemoral contact, each muscle was pulled with constant force respectively. Then the tibia was carried through from 40° to 140° of knee flexion. The contact forces between the femur and the tibia were measured by a