Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Usefulness of Hammering Sound Frequency Analysis as an Objective Evaluation Method for the Prevention of Fractures During Total Hip Arthroplasty

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

Fracture during total hip arthroplasty occurs partly because the acquisition of fixation at the time of stem implantation depends on the operator's experience and sensation due to the absence of definite criteria. Therefore, an objective evaluation method to determine whether the stem has been appropriately implanted is necessary. We clarified the relationship between the hammering sound frequency during stem implantation and internal stress in a femoral model, and evaluated the possible usefulness of hammering sound frequency analysis for preventing intraoperative fracture.

Three types of cementless stem were used. Orthopedists performed stem insertion using a procedure similar to that employed in routine operation. Stress was estimated by finite element analysis using the hammering force calculated from the loading sensor as a loading condition, and frequency analysis of hammering sound data obtained using a microphone was performed (Fig. 1).

Finite element analysis showed a decrease in the hammering sound frequency with an increase in the estimated maximum stress (Fig. 2, 3). When a decrease in frequency was observed, adequate hammering had already been performed to achieve press-fit stability. Therefore, there is a possibility that the continuation of hammering induces intraoperative fractures that become a problem. Based on the relationship between stress and frequency, the evaluation of changes in frequency may be useful for preventing the development of intraoperative fractures.

When a decrease in frequency is observed, the hammering force should be reduced thereafter. Hammering sound frequency analysis may allow the prediction of bone fractures that can be visually confirmed, and may be a useful objective evaluation method for the prevention of intraoperative bone fracture.