Advertisement for orthosearch.org.uk
Results 1 - 20 of 1819
Results per page:
Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims. Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. Methods. A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments. Results. Our results showed a significantly higher tendon-bone insertion histomorphological score in the training group, and the messenger RNA and protein expression levels of type II collagen (COL2A1), SOX9, and type X collagen (COL10A1) were significantly elevated. Additionally, tendon-bone insertion resulted in less scar hyperplasia after treadmill training, the bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were significantly improved, and the force required to induce failure became stronger in the training group. Functionally, the motor ability, limb stride length, and stride frequency of mice with tendon-bone insertion injuries were significantly improved in the training group compared with the control group. Conclusion. Treadmill training initiated on postoperative day 7 is beneficial to tendon-bone insertion healing, promoting biomechanical strength and motor function. Our findings are expected to guide clinical rehabilitation training programmes. Cite this article: Bone Joint Res 2023;12(5):339–351


Bone & Joint Research
Vol. 13, Issue 6 | Pages 272 - 278
5 Jun 2024
Niki Y Huber G Behzadi K Morlock MM

Aims. Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model. Methods. Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods. Results. Impaction force was reduced by 89% and 53% for vibratory insertion in 15 and 30 PCF foams, respectively. Both methods positioned the component with polar gaps under 2 mm in 15 PCF foam. However, in 30 PCF foam, the vibratory insertion resulted in a clinically undesirable polar gap of over 2 mm. A higher lever-out moment was achieved with the consecutive single blow insertion by 42% in 15 PCF and 2.7 times higher in 30 PCF foam. Conclusion. Vibratory implant insertion may lower periprosthetic fracture risk by reducing impaction forces, particularly in low-quality bone. Achieving implant seating using vibratory insertion requires adjustment of the nominal press-fit, especially in denser bone. Further preclinical testing on real bone tissue is necessary to assess whether its viscoelasticity in combination with an adjusted press-fit can compensate for the reduced primary stability after vibratory insertion observed in this study. Cite this article: Bone Joint Res 2024;13(6):272–278


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 23 - 23
8 May 2024
Jayatilaka M Fisher A Fisher L Molloy A Mason L
Full Access

Introduction. The treatment of posterior malleolar fractures is developing. Mason and Molloy (Foot Ankle Int. 2017 Nov;38(11):1229-1235) identified only 49% of posterior malleolar rotational pilon type fractures had syndesmotic instabilities. This was against general thinking that fixation of such a fragment would stabilize the syndesmosis. Methods. We examined 10 cadaveric lower limbs that had been preserved for dissection at the Human Anatomy and Resource Centre at Liverpool University in a solution of formaldehyde. The lower limbs were carefully dissected to identify the ligamentous structures on the posterior aspect of the ankle. To compare the size to the rotational pilon posterior malleolar fracture (Mason and Molloy 2A and B) we gathered information from our posterior malleolar fracture database. 3D CT imaging was analysed using our department PACS system. Results. The PITFL insertion on the posterior aspect of the tibia is very large. The average size of insertion was 54.9×47.1mm across the posterior aspect of the tibia. Medially the PITFL blends into the sheath of tibialis posterior and laterally into the peroneal tendon sheath. 78 posterior lateral and 35 posterior medial fragments were measured. On average, the lateral to medial size of the posteromalleolar fragment was 24.5mm in the posterolateral fragment, and 43mm if there is a posteromedial fragment present also. The average distal to proximal size of the posterolateral fragment was 24.5mm and 18.5mm for the posteromedial fragment. Conclusion. The PITFL insertion on the tibia is broad. In comparison to the average size of the posterior malleolar fragments, the PITFL insertion is significantly bigger. Therefore, for a posterior malleolar fracture to cause posterior syndesmotic instability, a ligamentous injury will also have to occur. This explains the finding by Mason and Molloy that only 49% of type 2 injuries had a syndesmotic injury on testing


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 19 - 19
1 Sep 2021
Lui D Ajayi B Fenner C Fragkakis A Bishop T Bernard J
Full Access

INTRODUCTION. The correct placement of pedicle screws is a major part of spine fusion and it requires experienced trained spinal surgeons. In the era of European Working Time Directive (EWTD), surgical trainees have less opportunity to acquire skills. Josh Kauffman (Author of The First 20 Hours) examined the K. Anders-Ericsson study that 10,000 hours is required to be an expert. He suggests you can be good at anything in 20 hours following 5 methods. This study was done to show the use of accelerated learning in trainees to achieve competency and confidence on the insertion of pedicle screws. METHODS. Data was collected using 3 experienced spine surgeons, 8 trainees and 1 novice (control) on the cadaveric insertion of pedicle screws over a 4 day didactic lecture in the cadaver lab. Each candidate had 2 cadavers and 156 screw placements over 4 hour shifts. Data was collected for time of pedicle screw insertion for each level on the left and right side. A pre-course and post-course questionnaire (Likert scale) was conducted. RESULTS. There were 8 candidates (surgeons) involved. 1 spinal SpR, 6 spine fellows and 1 junior consultant. A physiotherapist was the control novice. The surgeons and the control got significantly faster over time. The control made significantly more errors than the surgeons. Surgeons were significantly faster by the end (p value < 0.05). The control got faster over time and by the end, was no longer significantly slower than the surgeon when they first started. CONCLUSION. Pedicle screw insertion can cause significant morbidity, which includes paralysis. As a trainee, this is not an easy skill to acquire or practice. This focused pedicle screw course shows that a junior spinal surgeon can achieve improved competency and confidence in 20 hours but furthermore a complete novice can learn to insert pedicle screws and reach a level of competence almost at the level of the trainee in 20 hours as well


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 117 - 117
1 Jul 2020
Fletcher J Neumann V Wenzel L Richards G Gueorguiev B Gill H Whitehouse M Preatoni E
Full Access

Nearly a quarter of screws cause damage during insertion by stripping the bone, reducing pullout strength by over 80%. Studies assessing surgically achieved tightness have predominately shown that variations between individual surgeons can lead to underpowered investigations. Further to the variables that have been previously explored, several basic aspects related to tightening screws have not been evaluated with regards to how they affect screw insertion. This study aims to identify the achieved tightness for several variables, firstly to better understand factors related to achieving optimal intraoperative screw purchase and secondly to establish improved methodologies for future studies. Two torque screwdrivers were used consecutively by two orthopaedic surgeons to insert 60 cortical, non-locking, stainless-steel screws of 3.5 mm diameter through a 3.5 mm plate, into custom-made 4 mm thick 20 PCF sheets of Sawbone, mounted on a custom-made jig. Screws were inserted to optimal tightness subjectively chosen by each surgeon. The jig was attached to a bench for vertical screw insertion, before a further 60 screws were inserted using the first torque screwdriver with the jig mounted vertically, enabling horizontal screw insertion. Following the decision to use the first screwdriver to insert the remaining screws in the vertical position for the other variables, the following test parameters were assessed with 60 screws inserted per surgeon: without gloves, double surgical gloves, single surgical gloves, non-sterile nitrile gloves and, with and then without augmented feedback (using digitally displayed real-time achieved torque). For all tests, except when augmented feedback was used, the surgeon was blinded to the insertion torque. Once the stopping torque was reached, screws were tightened until the stripping torque was found, this being used to calculate tightness (stopping/stripping torque ratio). Screws were recorded to have stripped the material if the stopping torque was greater than the stripping torque. Following tests of normality, Mann-Whitney-U comparisons were performed between and combining both surgeons for each variable, with Bonferroni corrections for multiple comparisons. There was no significant (p=0.29) difference in the achieved tightness between different torque screw drivers nor different jig positions (p=0.53). The use of any gloves led to significant (p < 0 .001) increases in achieved tightness compared to not using gloves for one surgeon but made no difference for the other (p=0.38–0.74). Using augmented feedback was found to virtually eliminate stripping. For one surgeon average tightness increased significantly (p < 0 .001) when torque values were displayed from 55 to 75%, whilst for the other, this was associated with significantly decreases (p < 0 .001), 72 to 57%, both surgeons returned to their pre-augmentation tightness when it was removed. Individual techniques make a considerable difference to the impact from some variables involved when inserting screws. However, the orientation of screws insertion and the type of screwdriver did not affect achieved screw tightness. Using visual feedback reduces rates of stripping and investigating ways to incorporate this into clinical use are recommended. Further work is underway into the effect of other variables such as bone density and cortical thickness


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 78 - 78
1 Aug 2013
de Beer M
Full Access

Purpose:. To determine the insertion of the different layers of the rotator cuff and apply it to rotator cuff tears. Anatomical insertion of the rotator cuff holds the key to a proper anatomical repair. Method:. A study of the rotator cuff insertion was done in conjunction with MSc student department Anatomy. The rotator cuff consists of a capsular and tendinous layer. They have different mechanical properties. The capsular layer inserts ± 3 mm more medially on the tuberosity and the tendinous layer more laterally. It was shown that the superficial layer extends beyond the greater tuberosity and connects the supra-spinatus tendon to the sub-scapularis tendon via the bicepital groove. This connection was called the “rotator hood”. The “rotator hood” has a mechanically advantageous insertion, is a strong structure with a compressive force on the proximal humerus. Conclusion:. 1. The rotator cuff inserts on the greater tuberosity as two separate entities. 2. The capsular layer inserts on the more medial 2–3 mm. 3. The tendinous layer is attached over a broader more lateral area giving it a mechanical advantage. 4. The tendinous layer of supra-spinatus extends beyond the tuberosity to connect to the sub-scapularis tendon providing an even greater mechanical advantage


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 38 - 38
1 Feb 2017
Rusk J Behzadi K
Full Access

Purpose. Current methods for inserting a press fit hemispherical metal-backed acetabular component within the acetabula are uncontrolled, relying on the surgeon to generate the necessary forces required for sufficient introduction. While previous studies have recorded impact forces of 2–3 kN necessary to seat an acetabular cup using visual observation[1], some researchers have observed users imparting as high as 8.9 kN of force[2]. The aim of this study is to quantify the forces required to generate optimal implant primary stability, as well as compare force delivery methods. Method. The experiments were carried out using prepared bone substitute. A high frequency force sensor was rigidly mounted under the substitute to measure impact force and duration. An acetabular cup was inserted using successive reproducible impacts of varying magnitude (2.5 kg falling 17, 34, 43, 51, 68, or 85 mm). Impacts were repeated until the cup was no longer advancing. Each test recorded the number of impacts, maximum impact force, impact duration, and extraction force of the cup after insertion. The results were then compared against manual insertion (tapping) and high frequency vibratory insertion (50–500 Hz). Results. As shown in figure 1, an exponential relationship was found between the maximum impact force and cup extraction force (R. 2. = 0.97), with a mean impact force of 4200 N at full insertion. By contrast, manual insertion resulted in maximum impacts 30% greater on average, with no discernible increase in extraction force. High frequency vibratory insertion resulted in a linear relationship (R. 2. = 0.86) with a maximum extraction force of 335 N. Conclusion. Manual insertion has been shown to result in excessive force being used. This may result in additional stress to the acetabula, although additional study is needed to determine the clinical relevance. High frequency vibratory insertion has shown promise of reducing the impact forces required, with ongoing study of the effect at higher impact forces


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 33 - 33
1 Jun 2012
McGlynn J Mullen M Pillai A Clayton R Fogg Q Kumar C
Full Access

The exact action of the Peroneus Longus muscle on the foot is not fully understood. It is involved in a number of pathological processes like tendonitis, tenosynovitis, chronic rupture and neurological conditions. It is described as having a consistent insertion to the base of the first metatarsal, but there have also been reports of significant variations and additional slips. Our aim was to further clarify the anatomy of the main insertion of the Peroneus Longus tendon and to describe the site and frequency of other variable insertion slips. The course of the distal peroneus longus tendon and its variable insertion was dissected in 20 embalmed, cadaveric specimens. The surface area of the main insertion footprint was measured using an Immersion Digital Microscibe and 3D mapping software. The site and frequency of the other variable insertion slips is presented. There was a consistent, main insertion to the infero-lateral aspect of the first metatarsal in all specimens. The surface area of this insertion was found to be proportional to the length of the foot. The insertion in males was found to be significantly larger than females. The most frequent additional slip was to the medial cuneiform. Other less frequent insertion slips were present to the lesser metatarsals. The main footprint of the Peroneus Longus tendon is on the first metatarsal. There appears to an additional slip to the medial cuneiform frequently. Although we are unsure about the significance of these additional slips, we hope it will lead to a better understanding of the mechanism of action of this muscle and its role both in the normal and pathological foot


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 57 - 57
1 Jan 2017
Goossens Q Pastrav L Leuridan S Mulier M Desmet W Denis K Vander Sloten J
Full Access

A large number of total hip arthroplasties (THA) are performed each year, of which 60 % use cementless femoral fixation. This means that the implant is press-fitted in the bone by hammer blows. The initial fixation is one of the most important factors for a long lasting fixation [Gheduzzi 2007]. It is not easy to obtain the point of optimal initial fixation, because excessively press-fitting the implant by the hammer blows can cause peak stresses resulting in femoral fracture. In order to reduce these peak stresses during reaming, IMT Integral Medizintechnik (Luzern, Switzerland) designed the Woodpecker, a pneumatic reaming device using a vibrating tool. This study explores the feasibility of using this Woodpecker for implant insertion and detection of optimal fixation by analyzing the vibrational response of the implant and Woodpecker. The press-fit of the implant is quantified by measuring the strain in the cortical bone surrounding the implant. An in vitro study is presented. Two replica femur models (Sawbones Europe AB, Malmo Sweden) were used in this study. One of the femur models was instrumented with three rectangular strain gauge rosettes (Micro-Measurements, Raleigh, USA). The rosettes were placed medially, posteriorly and anteriorly on the proximal femur. Five paired implant insertions were performed on both bone models, alternating between standard hammer blow insertions and using the Woodpecker. The vibrational response was measured during the insertion process, at the implant and Woodpecker side using two shock accelerometers (PCB Piezotronics, Depew, NY, USA). The endpoint of insertion was defined as the point when the static strain stopped increasing. Significant trends were observed in the bandpower feature that was calculated from the vibrational spectrum at the implant side during the Woodpecker insertion. The bandpower is defined as the percentage power of the spectrum in the band 0–1000 Hz. Peak stress values calculated from the strain measurement during the insertion showed to be significantly (p < 0.05) lower at two locations using the Woodpecker compared to the hammer blows at the same level of static strain. However, the final static strain at the endpoint of insertion was approximately a factor two lower using the Woodpecker compared to the hammer. A decreasing trend was observed in the bandpower feature, followed by a stagnation. This point of stagnation was correlated with the stagnation of the periprosthetic stress in the bone measured by the strain gages. The behavior of this bandpower feature shows the possibility of using vibrational measurements during insertion to assess the endpoint of insertion. However it needs to be taken into account that it was not possible to reach the same level of static strain using the Woodpecker as with the hammer insertion. This could mean that either extra hammer blows or a more powerful pneumatic device could be needed for proper implant insertion


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 1 - 1
1 Jan 2017
Erani P Baleani M
Full Access

Good lag screw holding power in trabecular bone of the femoral head is a requisite to achieve stability in the management of proximal femoral fractures. It has been demonstrated that insertion torque and pullout strength of lag screw are linearly correlated. Therefore, insertion torque measurement could be a method to estimate the achieved screw purchase. Manual perception is not reliable [1], but the use of an instrumented screwdriver would make the procedure feasible. The aim of this study was to assess the accuracy achievable using the insertion torque as predictor of lag screw purchase. Four different screw designs (two cannulated and two solid-core screws) were investigated in this study. Each screw was inserted into a block of trabecular bone tissue following a standardised procedure designed to maximise the experimental repeatability. The blocks of trabecular tissue were extracted from human as well as bovine femora to increase the range of bone mineral density. The prediction accuracy was evaluated by plotting pullout strength versus insertion torque, performing a linear regression analysis and calculating the difference (as percentage) between predicted and measured values. Insertion torque showed a strong linear correlation (coefficient of determination R. 2. : 0.95–0.99) with the pullout strength of lag screw. However the prediction error in pullout strength estimation was greater than 40% for small values of insertion torque, decreasing down to 15% when the lag screw was driven into good quality bone tissue. Measuring insertion torque can supply quantitative information about the achieved lag screw purchase. Since screw design and insertion procedure have been shown to affect both the insertion torque and the pullout strength [2], the prediction model must be screw-specific and determined, closely simulating the clinical procedure defined by the screw manufacturer. However, the surgeon must be aware that, even under highly repeatable experimental conditions, the prediction error was found to be high when small insertion torque was measured, i.e. when the screw was driven in low quality bone tissue. Therefore, insertion torque is not reliable in evaluating lag screw purchase in the management of proximal femur fracture of osteoporotic patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIII | Pages 56 - 56
1 Sep 2012
McGlynn J Mullen M Pillai A Fogg Q Kumar CS
Full Access

Introduction. The exact action of the Peroneus Longus muscle on the foot is not fully understood. It is involved in a number of pathological processes like tendonitis, tenosynovitis, chronic rupture and neurological conditions. It is described as having a consistent insertion to the base of the first metatarsal, but there have also been reports of significant variations and additional slips. Our aim was to further clarify the anatomy of the main insertion of the Peroneus Longus tendon and to describe the site and frequency of other variable insertion slips. Methods and Materials. The course of the distal peroneus longus tendon and its variable insertion was dissected in 12 embalmed, cadaveric specimens. The surface area of the main insertion footprint and angle of insertion was measured using an Immersion Digital Microscribe and 3D mapping software. The site and frequency of the other insertion slips is also presented. Results. There was a consistent, main insertion to the infero-lateral aspect of the first metatarsal in all specimens. The only additional slip was to the medial cuneiform. This did not increase the total footprint. Discussion. The main footprint of the Peroneus Longus tendon is on the first metatarsal. There was an additional slip to the medial cuneiform in 33% of our specimens. Although we are unsure about the significance of this additional slip, we hope it will lead to a better understanding of the mechanism of action of this muscle and its role both in the normal and pathological foot


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 2 - 2
1 Aug 2013
van der Merwe W de Klerk T Blake G
Full Access

Background:. During the past two decades the medial Patellofemoral ligament has come to the fore as the essential lesion of acute patella dislocation and its reconstruction in cases of chronic instability seems logical. The femoral insertion of the medial Patellofemoral ligament (MPFL) is key to the isometry or desired anisometry of the reconstruction. Radiographic landmarks for the femoral insertion has been described in literature most notably by Schottle et al. AJSM 2007. We examined the consistency of these landmarks of the femoral insertion of the MPFL. Methods:. 24 unpaired knees of cadavaric specimen were dissected for the origin of the MPFL. A radiographic marker was then placed in the centre of the femoral attachment of the MPFL and a direct lateral X-ray obtained of the distal femur. The sweet spot was defined according to the landmarks described by Schottle et al and deviation from the sweet spot was measured. Results:. The average distance from the centre of the described radiological centre of the MPFL was 5.4 mm. In six cases the ligament insertion was 5.6 mm distal to the ideal radiological centre. We did not find the origin of the MPFL to be a consistent radiological landmark due to a wide insertion of the ligament on the femur with a variable anisometric centre. We recommend dynamically testing the insertion site of the MPFL around a guide wire inserted into the femur instead of relying solely on the radiological position


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 160 - 160
1 Jul 2014
Kanazawa T Gotoh M Ohta K Togou A Higashi R Shiba N Nakamura K
Full Access

Summary Statement. Tendon-bone interface becomes matured with the perforating fiber and the cells striding over the bone area. We suggest that both “perforating fiber” and “cell stride” could play a crucial role in regeneration after rotator cuff repair. Introduction. To obtain a successful outcome after rotator cuff repair, repaired tendon requires to be anchored biologically to the bone. However, it is well known that the histological structure of the repaired tendon-bone insertion is totally different from the normal insertion. This morphological alteration may contribute to biological instability after surgical repair. To address these issues, it is fundamental to clarify the difference of the structure between the normal and the repaired insertion in detail. Surprisingly, few studies on the tendon-bone insertion using electron microscopy has been performed so far, since the insertion area is solid (bone/cartilage) and extremely limited for the analysis. Recently, a new scanning electron microscopical method (FIB/SEM tomography) has been developed, making it possible to analyze the wider area with the higher resolution and reconstruct 3D ultrastructures. The purpose of this study was to analyze the ultrastructure of the repaired supraspinatus tendon-bone insertion in rat using FIB/SEM tomography. Materials and Methods. Adult Sprague-Dawley rats underwent complete cuff tear and subsequent repair of the supraspinatus tendon. The repaired supraspinatus tendon-bone interface was evaluated at 2 and 4 weeks after surgery. At each time point, 6 shoulders were used for biomechanical testing (ultimate load-to-failure and linear stiffness), 3 shoulders for conventional histological analysis and 3 shoulders for the ultrastructural analysis. The supraspinatus tendon insertion of the age-matched adult SD rats was used as normal control. For statistical analysis, the Wilcoxon's rank sum test was used to compare load-to-failure and linear stiffness. Differences of P<0.05 were considered significant. Results. <Biomechanical testing> All shoulders failed at the tendon-bone interface. The ultimate load-to-failure and the linear stiffness were significantly greater at 8 weeks than at 4 weeks (p<0.05). Normal tendon-bone insertion: The normal supraspinatus insertion consists of four-layered structure: tendon, fibrocartilage, mineralised fibrocartilage and bone. Repaired tendon-bone interface. At week 2, the fibro-vascular tissue was intervened between the tendon and bone at the repaired site. At week 4, the fibro-vascular tissue became organised, and perforating fibers were partially observed. <Ultrastructure using FIB/SEM tomography> Normal tendon-bone insertion: The ultrastructure of the normal supraspinatus insertion was very smooth. The cells were located between collagen bundles and arranged with their cell processes parallel to the bundles. Repaired tendon-bone interface: At week 2, the cells in the fibro-vascular tissue were arranged irregularly. At week 4, a part of the cells became arranged regularly and participated in linkage between the fibro-vascular tissue and bone, striding their processes across the bone side. Apparent boundary separating the fibro-vascular tissue from bone was observed throughout the periods. Conclusion. At 4 weeks after surgery, the repaired supraspinatus insertion remains to be immature and biologically weak. At 8 weeks after the surgery, it becomes matured with the perforating fiber and the cells striding over the bone area. We therefore suggest that both “perforating fiber” and “cell stride” could play a crucial role in regeneration of the tendon-bone interface after rotator cuff repair


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 51 - 51
1 Apr 2018
Leuridan S Goossens Q Roosen J Pastrav L Denis K Desmet W Vander Sloten J Mulier M
Full Access

Introduction. Aseptic acetabular component failure rates have been reported to be similar or even slightly higher than femoral component failure. Obtaining proper initial stability by press fitting the cementless acetabular cup into an undersized cavity is crucial to allow for secondary osseous integration. However, finding the insertion endpoint that corresponds to an optimal initial stability is challenging. This in vitro study presents an alternative method that allows tracking the insertion progress of acetabular implants in a non-destructive, real-time manner. Materials and Methods. A simplified acetabular bone model was used for a series of insertion experiments. The bone model consisted of polyurethane solid foam blocks (Sawbones #1522-04 and #1522-05) into which a hemispherical cavity and cylindrical wall, representing the acetabular rim, were machined using a computer numerically controlled (CNC) milling machine (Haas Automation Inc., Oxnard, CA, USA). Fig. 1 depicts the bone model and setup used. A total of 10 insertions were carried out, 5 on a low density block, 5 on a high density block. The acetabular cups were press fitted into the bone models by succeeding hammer hits. The acceleration of the implant-insertor combination was measured using 2 shock accelerometers mounted on the insertor during the insertion process (PCB 350C03, PCB Depew, NY, USA). The force applied to the implant-insertor combination was also measured. 15 hammer hits were applied per insertion experiment. Two features were extracted from the acceleration time signal; total signal energy (E) and signal length (LS). Two features and one correlation measure were extracted from the acceleration frequency spectra; the relative signal power in the low frequency band (PL, from 500–2500Hz) and the signal power in the high frequency band (P Hf, from 4000–4800 Hz). The changes in the low frequency spectra (P Lf, from 500–2500 Hz) between two steps were tracked by calculating the Frequency Response Assurance Criterion (FRAC). Force features similar to the ones proposed by Mathieu et al., 2013 were obtained from the force time data. The convergence behavior of the features was tracked as insertion progressed. Results. Differences were noted visually between the acceleration data recorded at the beginning of insertion and towards the end, both in the time domain (fig. 2A) as well as in the frequency domain (fig. 2B). These differences were also captured by the proposed features. Fig. 3 shows a typical representation of how the time (A), frequency (B) and force (C) features evolved during insertion. Based on a simple convergence criterion, the insertion endpoint could be determined. Conclusions. The convergence behavior, and the insertion endpoint thus identified, of the force-based and acceleration based features correlated well. The different features capture the changes in damping and stiffness of the implant-bone system that are occurring as the insertion progresses and combining them improves the robustness of the endpoint detection method. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 421 - 421
1 Nov 2011
Lovell T Hozack W Kreuzer S Merritt P Nogler M Puri L Wuestemann T Bastian A
Full Access

The current decade has seen a marked rise in popularity of minimally invasive hip replacement, done through a variety of surgical approaches. A specific downside to the direct anterior approach includes the significant difficulty getting a “straight shot” down the femoral canal for either straight, nonflexible reaming or broaching as with standard approaches. Improper alignment in the femoral canal can lead to sub-optimal load transfer and thus compromised fixation. The femoral broach and stem insertion path for this approach is best described as a curved one, rather than the typical straight path. Some femoral components appear to be more suitable to this technique due to their geometries. The purpose of the study was to describe the effects that the single geometric parameter, stem length, has on its insertion path into the femoral canal. Due to the potential introduction of human error associated with repetitively performing a specific motion, both a physical study and a computer generated analysis were conducted. For the physical portion of the study, a femoral implant body of generic fit and fill geometry was designed and manufactured. The length of the stem was varied from 40 mm to 100 mm in 10 mm increments. A medium sized synthetic femur (Sawbones, Pacific Labs, Seattle, WA) was machined to match the volume of the full length stem. The insertion path constraints were defined such that the stem had to maintain the greatest allowable insertion angle while still making contact on both the medial and lateral side of the canal during translation in the X direction. To reduce the variability in applying the constraints, a single author conducted the insertion procedure for each length stem while the path was videotaped from a fixed position directly in front of the setup. The most proximal lateral point of the stem was tracked through the insertion path and the X, Y coordinates were recorded at a frequency of 2 FPS. The area under this curve, referred to as the minimum insertion area (MIA), was calculated. For the computer generated portion of the study, a CAD model of the standard length Omnifit. ®. (Stryker Orthopaedics) was utilized. The stem was modified to create 5 additional models where the length was progressively shortened to 65%, 55%, 45%, 35%, and 25% of original length or 91mm, 77mm, 63mm, 49mm, and 35mm respectively. The femur was created from a solidified mesh of a computed tomography (CT) scan with the canal virtually broached for a full length stem. The models were each virtually assembled within the femoral canal with the similar constraints as the physical study. Again, the most proximal lateral point of the stem was tracked through the insertion path with the coordinates recorded and the MIA was calculated. There was a non-linear relationship between stem length and the MIA with the rate of change decreasing as the stem length decreased. That is, the greatest decrease in MIA was between the standard length and next longest length in the computer simulation. It was noted that marked change in MIA began to subside between the 77mm and 63mm stems and continued this trend of having less influence onward through to the shorter lengths. Although the results of the physical study showed a higher variability than the computer generated portion, it does confirm the results of the computer generated study. Minimizing the trauma associated with THR has led most of the above authors to the direct anterior approach. However, the femoral broach and stem insertion path is best described as a curved one, rather than the typical straight path used in other approaches. This curved insertion path also has benefits for other approaches since the broaches and stem can be kept away from the abductors, minimizing the potential injury to them. Shorter stem length makes this curved insertion path easier to perform. This is the first study to describe the effect that stem length has on its insertion path into the femoral canal. As expected, the physical portion of the study showed more variability than the computer generated portion. However, the physical and computer studies correlated well, with shorter stem lengths clearly allowing a more curved insertion path. The improvement tapered off in stem lengths below 63mm. This length correlates well with the other attempts at a shorter stem. This study provides quantitative data to help with shorter stem design and possible computer navigated insertion paths


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 32 - 32
1 Jul 2012
Lund T Laine T Österman H Yrjönen T Schlenzka D
Full Access

Study design. Literature review of the best available evidence on the accuracy of computer assisted pedicle screw insertion. Background. Pedicle screw misplacement rates with the conventional insertion technique and adequate postoperative CT examination have ranged from 5 to 29 % in the cervical spine, from 3 to 58 % in the thoracic spine, and from 6 to 41% in the lumbosacral region. Despite these relatively high perforation rates, the incidence of reported screw-related complications has remained low. Interestingly, the highest rates of neurovascular injuries have been reported from the lumbosacral spine in up to 17% of the patients. Gertzbein and Robbins introduced a 4-mm “safe zone” in the thoracolumbar spine for medial encroachment, consisting of 2-mm of epidural and 2-mm of subarachnoid space. Later, several authors have found the safety margins to be significantly smaller, suggesting that the “safe zone” thresholds of Gertzbein and Robbins do not apply to the thoracic spine, and seem to be too high even for the lumbar spine. The midthoracic and midcervical spine, as well as the thoracolumbar junction set the highest demands for accuracy in pedicle screw insertion, with no room for either translational or rotational error at e.g. T5 level. Computer assisted pedicle screw insertion (navigation) was introduced in the early 90's to increase the accuracy and safety of pedicle screw insertion. Material. PubMed literature search revealed two randomized controlled trials (RCT) comparing the in vivo accuracy of conventional and computer assisted pedicle screw insertion techniques. Three meta-analyses have assessed the published reports on the accuracy of pedicle screw insertion with or without computer assistance, one additional meta-analysis concentrated on the functional outcome of computer assisted pedicle screw insertion. Results. The RCTs by Laine et al and Rajasekaran et al achieved significantly higher screw placement accuracy with computer assistance than with the conventional techniquebased on anatomical landmarks. In a degenerative patient population, Laine et al reported a misplacement rate of 4.6% with computer assistance compared to 13.4% with the conventional technique. In addition to this quantitative difference, a qualitative difference in the misplaced screws was noticed: in the conventional group, 28 out of 37 misplaced screws were either inferior or medial, whereas in the computer assisted group, 1 out of 10 misplaced screws was situated in these ”danger zones”. In deformity surgery, Rajasekaran et al reported a 2% pedicle screw misplacement rate with a computer assisted technique compared to 23% with the conventional technique. Interestingly, in their study, the average screw insertion time in the computer assisted group was significantly shorter than with the conventional technique. The three meta-analyses, assessing up to 37 337 pedicle screws, reported significantly higher accuracy in the placement of pedicle screws with computerassistance compared with the conventional methods. The superiority of the computer assisted technique was even more obvious with abnormal surgical anatomy. CT-based and 3D-fluoroscopy-based navigation methods provided better accuracy compared to 2Dfluoroscopy-based navigation. No statistically significant benefit with computer assistance in the incidence of neuro-vascular complications, or in functional outcome was demonstrated. Conclusion. High pedicle screw misplacement rates have been reported with the conventional technique based on anatomical landmarks and intraoperative fluoroscopy. The concept of ”safe zone” is hypothetical, and underestimates the true risks of misplaced pedicle screws. Computer assistance significantly improves the accuracy and safety of pedicle screw insertion. It will, however, be difficult to correlate this increased accuracy to improved patient outcomes


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 269 - 269
1 Jul 2011
Beavis RC Barber FA Herbert MA
Full Access

Purpose: To evaluate the insertion forces required to seat osteochondral plug grafts and the accuracy of plug harvest and seating using three unique instrumentation systems. Our hypothesis was that the systems would have different insertion forces. Method: The COR (Depuy-Mitek), Mosaicplasty (Smith & Nephew) and OATS (Arthrex.) Instrumentation systems and recommended surgical techniques were used to harvest, transfer, and implant grafts. To simulate the in-vivo surgical setting, multiple-impacts with a mallet were applied to the instruments. Ten tests each were performed for all systems in both rigid polyurethane foam blocks and porcine femur models. Plug length after harvest and final graft position were manually measured. Insertion forces were recorded using a load cell (Omega Engineering) affixed to the insertion tamp. The area under the force curve recorded by the transducer for each blow was then summed to yield the total force required to seat each graft. Means and standard deviations were then calculated and Tukey’s test was used to determine significant differences between the means. Results: The COR system demonstrated significantly lower mean insertion forces in both polyurethane foam blocks and porcine models when compared with the OATS and Mosaicplasty systems. Graft harvest with Mosiacplasty led to greater harvest length inconsistency than with other systems tested. OATS grafts were more likely to be left proud. Conclusion: The COR system produced significantly lower insertion forces during graft insertion. COR and OATS yielded consistent harvest lengths. The majority of OATS grafts were left proud which would require additional impaction force to fully seat the graft


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 56 - 56
1 Jan 2016
Iguchi H Mitsui H Murakami S Kobayashi M Nagaya Y Nozaki M Goto H Watanabe N Shibata Y Shibata Y Fukui T Otsuka T
Full Access

Introduction. Since 1989, we have been developing lateral flare stem. The concept of lateral flare stem is to deliver proximal part big enough to fill the proximal cavity that most of the cement stems can fill and most of the cementless stems cannot. Also having distal part polished, much less distal load transfer occurs than cement stem. Thus, we can expect high proximal load transfer to prevent stress shielding. To deliver lateral flare stem, straight insertion path cannot be available, as proximal lateral part to fill inside the greater throchanter collides to the greater trochanter. So 3-Dimension insertion path was calculated to deliver that part through the narrow made by neck osteotomy. The first generation of the lateral flare stem was custom made. The second generation was designed as an off-the-shelf stem from what we have learned by the experience of custom stems. With the third generation, the stem was shortened to achieve more proximal load transfer. Direct Anterior Approach (DAA) developed by Judet is one of less invasive hip approach. With a stem with straight insertion path, the extended line of proximal femoral axis should come out of the skin. To achieve this position, proximal end of the femur has to be fully pulled up. (Fig.1) Some of the cases would be able to be lifted up but some have difficulty. Using lateral flare stem with curved 3 dimensional insertion path, even the axis extension does not come out of the skin, it would be expected to be inserted. In the present study, 3D insertion path of the lateral flare short stem for DAA was analyzed. Materials and methods. Preoperative CAT scan data were transferred to STL data by Mimics®. The procedures after that were done by Magics®. First, neck osteotomy was done, externally rotated, and mild extension that doesn't make the axis come out of the skin was added. Then insertion path was verified keeping the stem attached medial sidewall of the canal (Fig. 2). In actual case, skin translation and pelvis rotation was assessed by 3D scanner. (Fig. 3). Results. Three D scanner revealed that the pelvis rotation is less than detective limit, and the upper skin incision where the stem passes remains almost the same place by dropping the leg. Lateral flare short stem could be inserted without lifting the femur out of the skin. So it was expected that lateral flare short stem has high applicability for DAA. Discussion. We can expect less invasive THA with DAA. However, once we have problem during surgery such as hard insertion or fracture and so forth, it is very hard to recover from those difficulties, because with supine position we cannot access posterior side of the leg. By easier insertion, less stress for bone and other tissues, we can reduce the risks. Even cases with easier femoral lift up, pulling femur less can reduce those risks


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 141 - 141
1 Feb 2017
Goossens Q Leuridan S Pastrav L Mulier M Desmet W Denis K Vander Sloten J
Full Access

Introduction. Each year, a large number of total hip arthroplasties (THA) are performed, of which 60 % use cementless fixation. The initial fixation is one of the most important factors for a long lasting fixation [Gheduzzi 2007]. The point of optimal initial fixation, the endpoint of insertion, is not easy to achieve, as the margin between optimal fixation and a femoral fracture is small. Femoral fractures are caused by peak stresses induced during broaching or by the hammer blows when the implant is excessively press-fitted in the femur. In order to reduce the peak stresses during broaching, IMT Integral Medizintechnik (Luzern, Switzerland) designed the Woodpecker, a pneumatic broach that generates impulses at a frequency of 70 Hz. This study explores the feasibility of using the Woodpecker for implant insertion by measuring both the strain in the cortical bone and the vibrational response. An in vitro study is presented. Material and Methods. A Profemur Gladiator modular stem (MicroPort Orthopedics Inc. Arlington, TN, USA) and two artificial femora (composite bone 4th generation #3403, Sawbones Europe AB, Malmö, Sweden) were used. One artificial femur was instrumented with three rectangular strain gauge rosettes (Micro-Measurements, Raleigh, NC, USA). The rosettes were placed medially, posteriorly and anteriorly proximally on the cortical bone. Five paired implant insertions were repeated on both artificial bones, alternating between standard hammering and Woodpecker insertions. During the insertion processes the vibrational response was measured at the implant and Woodpecker side (fig. 1) using two shock accelerometers (PCB Piezotronics, Depew, NY, USA). Frequency spectra were derived from the vibrational responses. The endpoint of insertion was defined as the point when the static strain stopped increasing during the insertion. Results. Peak stress values calculated out of the strain measurement during the insertion showed to be significantly (p < 0.05) lower at two locations using the Woodpecker compared to the hammer blows at the same level of static strain. However, the final static strain at the endpoint of insertion was approximately a factor two lower using the Woodpecker compared to the hammer. During the last hammer insertion a fracture occurred, which was clearly visible in the frequency spectra. Figure 2 shows the sudden change between the spectra of the hit prior and after the fracture. Discussion/Conclusion. Peak stresses showed to be lower using the Woodpecker compared to hammer insertion, which is a promising result concerning fracture prevention. However it needs to be taken into account that it was not possible to reach the same level of static strain using the Woodpecker as with the hammer insertion. It is expected that the Woodpecker in its actual design is not able to reach a similar level of press-fit as hammer blows. Using vibrational data showed to be promising for fracture detection, as fractures are not always visible due to the soft tissue. For figures, please contact authors directly


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 97 - 97
1 Mar 2010
Mulier M
Full Access

The operation technique and prosthetic materials for total hip replacement (THR) have continuously improved. Still, defining the end-point of the prosthetic stem insertion into the femur canal relies on the feeling of the orthopaedic surgeon. This consists of a sense of mechanical stability when exerting torque forces on the prosthesis as well as a feeling of the prosthesis being well fixed and not displaceable along the axis of the femur. Stability and survival of the implant is directly related to the long term fixation stability of the prosthesis stem. But, excessive press-fitting of a THR femoral component can cause intra-operative fractures. In our centre custom made stem prostheses are commonly used to increase the optimal fit in the femoral canal. We report the first per-operative use of a non invasive vibration analysis technique for the mechanical characterization of the primary bone-prosthesis stability. From in vitro studies a protocol has been derived for per-operative use. The prosthesis neck is attached to a shaker using a stinger provided with a clamping system. The excitation is realized through white noise in the range 0–12.5 kHz, introducing a power of approximately 0.5W into the femur-prosthesis system. The input force and the response acceleration are measured in the same point with an impedance head mounted between the shaker and the stinger. The Frequency Response Function (FRF) is measured and recorded by a Pimento vibration analyzer connected to a portable computer provided with the appropriate software. All equipment is installed in the surgical theatre but outside the so-called laminar flow area. The surgeon inserts the implant in the femoral canal through repetitive controlled hammer blows. After each blow, the FRF of the implant-bone structure is measured directly on the prosthesis neck. The hammering is stopped when the FRF graph does not change noticeably anymore. The amount of FRF change between insertion steps is quantified by the Pearson’s correlation coefficient R between successive FRFs. A correlation between the FRFs of successive stages of R=(0.99 +/− 0.01) over the range 0–10000 Hz is proposed as an endpoint criterion. Non-cemented custom made stem insertion was studied in 30 patients. In 26/30 cases (86.7%), the correlation coefficient between the last two FRFs was > 0.99 when the surgeon stopped the insertion. In 4 cases, the surgeon decided to stop the insertion because of suspected bone fragility, the final correlation coefficient was lower. In one case an abnormal change in the FRF graph triggered inspection of the femur bone. A small fracture was observed and insertion was stopped. In a second case FRF graph showed an oscillating behaviour, while the stem was visibly not completely inserted. After withdrawal of the stem and readjustment of the femoral canal, the stem could be reinserted and the Pearson’s correlation index at end of insertion was 0.998. The use of custom made stem prosthesis, made exactly to fit into the femoral canal increases the risk of excessive press fit and intra-operative fractures. Vibration analysis showed to be a useful tool to define end of the stem insertion