header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



8th Combined Meeting Of Orthopaedic Research Societies (CORS)


Summary Statement

Tendon-bone interface becomes matured with the perforating fiber and the cells striding over the bone area. We suggest that both “perforating fiber” and “cell stride” could play a crucial role in regeneration after rotator cuff repair.


To obtain a successful outcome after rotator cuff repair, repaired tendon requires to be anchored biologically to the bone. However, it is well known that the histological structure of the repaired tendon-bone insertion is totally different from the normal insertion. This morphological alteration may contribute to biological instability after surgical repair. To address these issues, it is fundamental to clarify the difference of the structure between the normal and the repaired insertion in detail. Surprisingly, few studies on the tendon-bone insertion using electron microscopy has been performed so far, since the insertion area is solid (bone/cartilage) and extremely limited for the analysis. Recently, a new scanning electron microscopical method (FIB/SEM tomography) has been developed, making it possible to analyze the wider area with the higher resolution and reconstruct 3D ultrastructures. The purpose of this study was to analyze the ultrastructure of the repaired supraspinatus tendon-bone insertion in rat using FIB/SEM tomography.

Materials and Methods

Adult Sprague-Dawley rats underwent complete cuff tear and subsequent repair of the supraspinatus tendon. The repaired supraspinatus tendon-bone interface was evaluated at 2 and 4 weeks after surgery. At each time point, 6 shoulders were used for biomechanical testing (ultimate load-to-failure and linear stiffness), 3 shoulders for conventional histological analysis and 3 shoulders for the ultrastructural analysis. The supraspinatus tendon insertion of the age-matched adult SD rats was used as normal control. For statistical analysis, the Wilcoxon's rank sum test was used to compare load-to-failure and linear stiffness. Differences of P<0.05 were considered significant.


<Biomechanical testing> All shoulders failed at the tendon-bone interface. The ultimate load-to-failure and the linear stiffness were significantly greater at 8 weeks than at 4 weeks (p<0.05). Normal tendon-bone insertion: The normal supraspinatus insertion consists of four-layered structure: tendon, fibrocartilage, mineralised fibrocartilage and bone.

Repaired tendon-bone interface. At week 2, the fibro-vascular tissue was intervened between the tendon and bone at the repaired site. At week 4, the fibro-vascular tissue became organised, and perforating fibers were partially observed. <Ultrastructure using FIB/SEM tomography> Normal tendon-bone insertion: The ultrastructure of the normal supraspinatus insertion was very smooth. The cells were located between collagen bundles and arranged with their cell processes parallel to the bundles. Repaired tendon-bone interface: At week 2, the cells in the fibro-vascular tissue were arranged irregularly. At week 4, a part of the cells became arranged regularly and participated in linkage between the fibro-vascular tissue and bone, striding their processes across the bone side. Apparent boundary separating the fibro-vascular tissue from bone was observed throughout the periods.


At 4 weeks after surgery, the repaired supraspinatus insertion remains to be immature and biologically weak. At 8 weeks after the surgery, it becomes matured with the perforating fiber and the cells striding over the bone area. We therefore suggest that both “perforating fiber” and “cell stride” could play a crucial role in regeneration of the tendon-bone interface after rotator cuff repair.