Advertisement for orthosearch.org.uk
Results 1 - 20 of 309
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 4 - 4
1 Dec 2019
Suda A Landua N Miethke T
Full Access

Aim. Diagnostics of orthopedic implant infection remains challenging and often shows false negative or inadequate results. Several methods have been described to improve diagnostic methods but most of them are expensive (PCR) or not accessible for all hospitals (sonication). Aim of this study was to evaluate the results of incubation of orthopedic explants compared to biopsies and punction fluid using conventional microbiological methods. Method. In this prospective study, we included patients who received septic or aseptic orthopedic implant removal in a single University hospital between July and December 2018. A part of the explant as well as minimum 2 tissue biopsies or additional punction fluid were put in a bouillon and incubated for 11 days. Patient´s records with co-morbidities, use of antibiotics and demographic data were evaluated. The results were analyzed. The study was approved by the ethical committee. Results. 94 patients were included in this study (43 females, 51 males, mean age 54 years). We detected statistically significant more pathogens in the bouillon with explants compared to biopsies (p=0,0059). We found the same results with pedicle screws (n=11, p=0,039) and endoprosthesis (n=56, p=0,019). Patients after osteosynthesis (p=27) showed same results but statistically not significant (p=0,050). Use of antibiotics did not have influence on the diagnostic result as well as co-morbidities. In 38 patients (40,4%), additional bacteria could be detected in explant´s bouillon. Most common pathogens were Staph. aureus, E. faecalis, Staph. epidermidis and Micrococcus luteus, mixed infections could be found in 9%. Conclusions. In this study we could show that incubation of orthopedic implants has advantages in diagnostics of pathogens in infected endoprosthesis, osteosynthesis and spondylodesis. This method is simple compared to PCR or sonication and as cheap as incubation of tissue samples but in 40% of the cases, additional pathogens can be detected. We recommend to incubate removed screws, hip endoprosthetic heads or inlays in bouillon to optimize diagnostics and to detect all pathogens


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 29 - 29
1 Dec 2015
Camernik P Dolinar D Kocjancic B Sluga B Jeverica S
Full Access

Accurate identification of pathogens is a crucial step for successful treatment of implant-associated infections. Sonication of explanted foreign material and subsequent sonicate-fluid culture is regarded to be more sensitive than conventional tissue culture. However, the duration of incubation of cultures remains controversial. The aim of our study was to evaluate diagnostic yield of prolonged 14-days incubation compared to more classical 7-days incubation. Consecutive sonicate fluid culture results from a 2-years period (2013–2015) were retrospectively analysed. All sonicate fluids were cultured aerobically, anaerobically and using blood culture system for 14 days and inspected for growth on day 1, 2, 7 and 14 days. Terminal subcultivation was performed on day 7 from broth and blood culture system for additional 7 days aerobically and anaerobically. Time of bacterial isolation was recorded. Microbiological significance was determined based on isolate quantity and concomitant growth in conventional tissue cultures. A total of 394 sonicate fluid cultures from 304 patients (8–95 years, mean age 62), 53.9% (n=164) women, were analysed. 51.0% (n=201) were from explanted osteosynthetic material, 37.6% (n=148) from hip prosthesis and 11.4% (n=45) from knee prosthesis. Overall, 57.1% (n=225) of cultures were positive. Among them, 71.1% (n=160) were monomicrobial, 21.3% bimicrobial and 7.6% (n=17) polymicrobial. In total, 312 bacterial isolates were isolated. The most frequently isolated bacteria were coagulase-negative staphylococci (CoNS) 34.6% (n=108), Staphylococcus aureus 16.4% (n=51) and Propionibacterium acnes 11.2% (n=35). Gram-negative bacteria and anaerobes represented 18.3% (n=57) and 14.4% (n=45) of isolates, respectively. Among all sonicate fluid cultures, 92.0% (n=207) were positive after 7 days while 8.0% (n=18) were positive only after prolonged 14-days incubation with P. acnes being the predominant bacteria isolated after prolonged incubation. Among all P. acnes isolates 57.1% (n=20) were isolated within 7 days and 42.9% (n=15) within 14 days. Based on microbiologic criteria, 45.7% (n=16) of them were diagnostic; 37.1% (n=13) among early isolates and 8.6% (n=3) among late isolates, difference being statistically significant (p=0.016). Prolonged 14-days incubation of sonicate fluid culture for the diagnosis of implant-associated infections offers only minor 8.0% improvement with regard to conventional 7-days incubation. The majority of P. acnes isolated after prolonged incubation are non-diagnostic using microbiologic criteria. Caution in an interpretation of significance of P. acnes isolated after 14-days incubation is warranted. However, due to a significant impact on patient management prolonged 14-days incubation is still recommended


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 82 - 82
22 Nov 2024
Roskar S Rak M Mihalic R Trebse R
Full Access

Aim. Periprosthetic joint infection (PJI) is one of the most devastating complications after joint replacement. It is associated with high morbidity and economic burden when misdiagnosed as an aseptic failure. Among all cases of PJI, up to 25% could yield negative cultures. Conversely, among cases of aseptic failures, up to 30% may actually be undiagnosed PJIs. In PJIs microbiological diagnosis is a key step for successful treatment. Sonication of the removed prosthesis is more sensitive than conventional periprosthetic-tissue culture, especially in patients who received antimicrobial therapy before surgery. This study aimed to compare the diagnostic value of classic sonication fluid cultures (SF-C) and sonication fluid incubation in blood culture bottle (SF-BCB). Method. Between 2016 and 2018 we analysed 160 revision procedures of joint arthroplasties. For each procedure, at least 5 microbiological and multiple histopathological samples were harvested, and explant sonication was performed which was further analysed by SF-C and SF-BCB. For SF-C classical cultivation of sonication fluid was performed. While for SF-BCB, 10 mL of sonication fluid was inoculated into aerobic and anaerobic lytic blood culture bottles. The definite diagnosis of PJI was based on the EBJIS definition. Results. Among 160 revisions, 59 PJIs were identified, 15 patients were treated with the debridement and implant retention, 7 patients with the one-stage and 35 with the two-stage exchange, remaining 2 were partial revisions. The sensitivity of SF-C and SF-BCB were 81.5% and 94.9%, respectively. The mismatch of microbe identification was observed in 5 cases. We observed positive SF-C while negative SF-BCB in 4 cases, among them having 2 positive histology. While 12 patients have negative SF-C and positive SF-BCB, among them 3 have positive and 6 negative histology. Among these 12 patients, typical low-grade microbes were identified in 9 cases (5 cases of C. acnes, 3 cases of S. epidermidis, and 1 case of S. capitis). Conclusions. The weakest point in all PJI diagnostic criteria is their sensitivity. SF-BCB demonstrates higher sensitivity in diagnosing PJI compared to SF-C. Therefore, it appears prudent to incorporate SF-BCB into the diagnostic protocol for all patients exhibiting either low-grade PJI symptoms or experiencing undiagnosed, presumably aseptic failures, where the likelihood of misdiagnosing infection is greatest


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 71 - 71
1 Jan 2016
Janz V Wassilew GI Perka C
Full Access

Introduction. A timely isolation of the causative bacterial species is of paramount importance in the treatment of periprosthetic joint infection (PJI). Sonication of the explanted endoprosthesis and the microbiological culture of sonicate fluid (SFC) has been proven to increase the rate of bacterial isolations in comparison to the conventional microbiological methods. The cultivation of aspired synovial fluid in blood culture bottles (BCB) has been shown to yield a higher rate of bacterial isolations and produce a lower rate of contaminants than cultivation on conventional agar plates. The primary aim of this study was to investigate whether the inoculation of BCB with sonicate fluid leads to a higher rate of bacterial isolations than the culture on agar plates. Secondly, we wanted to investigate whether the utilization of BCB leads to an earlier identification of the causative bacterial species. To our knowledge this is the first study to investigate the effects of BCB use on SFC. Methods. We performed a retrospective analysis comparing the results of the two different culture methods. To detect slow growing species all microbiological cultures, regardless of the culture method, were incubated for 14 days. Results. Of the 206 patients included in our study 112 showed a positive bacterial isolation. 50 patients showed a positive bacterial growth in the intraoperative tissue cultures, 45 patients showed a positive bacterial isolation in the synovial aspiration and 104 patients showed a positive bacterial growth in the SFC. From these 45 positive isolations in synovial cultures 24 were achieved through agar plate culture and 37 were achieved through incubation in BCB. From the 104 patients with a positive bacterial isolation through SFC 51 were possible through agar plate cultures and 101 were achieved through incubation in BCB. The utilization of BCB also reduced the culture time for both the culture of synovial fluid as well as for SFC. On average the BCB produced a positive bacterial growth one day before the conventional agar plate cultures for synovial fluid and over one day earlier for sonicate fluid. Discussion and conclusion. When sonicate fluid is cultured in blood culture bottles it leads to both an increase in positive bacterial isolations and quicker bacterial growth than the culture on conventional agar plates


Bone & Joint Open
Vol. 1, Issue 7 | Pages 330 - 338
3 Jul 2020
Ajayi B Trompeter A Arnander M Sedgwick P Lui DF

Aims

The first death in the UK caused by COVID-19 occurred on 5 March 2020. We aim to describe the clinical characteristics and outcomes of major trauma and orthopaedic patients admitted in the early COVID-19 era.

Methods

A prospective trauma registry was reviewed at a Level 1 Major Trauma Centre. We divided patients into Group A, 40 days prior to 5 March 2020, and into Group B, 40 days after.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 139 - 139
1 Nov 2021
Müller M Thierbach M Aurich M Wildemann B
Full Access

Introduction and Objective. The rupture of the anterior cruciate ligament is a common sports injury and surgical reconstruction is often required to restore full function of the knee. Hamstring tendons are usually used as autografts. In addition to knee pain and stiffness, infections are feared complications after surgery. Incubation of the autograft in a vancomycin solution until implantation reduced the infection rate by about ten-fold. Recent studies showed no negative effect of vancomycin on the biomechanical properties of porcine tendons. A negative effect of high vancomycin concentrations on chondrocytes and osteoblast is reported, but the effect on tendon and tenocytes is not known. Materials and Methods. Rat Achilles tendons or isolated tenocytes were incubated with an increasing concentration of vancomycin (0 – 10 mg). Tendons were incubated for 0 – 40 minutes, while tenoyctes were incubated for 20 minutes followed by culturing for up to 7 days. Cell viability was assessed with PrestoBlue Assay and live/dead stain. The potential effect of vancomycin on the expression of tendon specific genes and extracellular matrix (ECM) genes was quantified. Possible structural changes of the tendon are analyzed. Results. Incubation of the tendons or tenocytes with 5 mg vancomycin for 20 minutes (clinical use) had no negative effects on the cell viability in the tendons or the isolated tenocytes, while incubation with the toxic control (ethanol) significantly reduced cell viability. Even twice the concentration and a longer incubation time had no negative effect on the cells in the tendons or the isolated cells. Vancyomycin did not affect the expression of Col1a1, Col3a1, and the tenocyte markers mohawk, scleraxis and tenomodulin. Conclusions. The results showed that clinical practice of wrapping the autograft in vancomycin did not impair the tenocyte viability. The expression of collagens and tenocyte markers was also not affected, neither in the incubated tendons nor in the isolated cells. This indicates that vancomycin had no effect on cell phenotype and the formation of the extracellular matrix, which, in addition to cell viability, is important for the performance of the autograft


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 69 - 69
22 Nov 2024
De Vecchi E Riccardi M Mastroianni N
Full Access

Aim. Diagnosis of prosthetic joint infection are often complicated by the presence of biofilm, which hampers bacteria dislodging from the implants, thus affecting sensitivity of cultures. In the last 20 years several studies have evidenced the usefulness of implant sonication to improve microbial recovery from biofilm formed on inert substrates. More recently, treatment of prosthetic joints and tissues with Dithiothreitol, a sulphur compound already used in routine diagnostic workflow for fluidification of respiratory samples, has proved to be not inferior to sonication in microbiological diagnosis of prosthetic joint infections. This study aimed to evaluate if the combination of the two treatments could further improve microbial retrieval from biofilm in an in vitro model. Method. Three isolates of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Eschericha coli and Pseudomonas aeruginosa responsible of prosthetic joint infections were used. They were grown onto 3 titanium discs (20 mm diameter) and incubated in 3 sterile plastic containers with 15 mL of Triptyc Soy Broth. After overnight incubation, not adhered cells were removed and fresh broth was added to each sample. After 48 hours incubation, the exausted broth was removed and one sample was used for sonication, one for treatment with 0,1% (v:v) Dithiothreitol and one treated with Dithiothreitol followed by sonication. Treated fluids were plated on Muller Hinton Agar plates for colony count. One-way ANOVA analysis was performed to evidence statistical differences between treatments. Results. Similar colony counts were observed for the 3 treatments: 10.1± 0.77 log CFU/mL for Dithiothreitol, 10.0 ± 0.75 for sonication and 10.1 ±0.73 for dithiothreitol + sonication. No statistical differences between the 3 treatments were evidenced by ANOVA analysis. Conclusions. Results seems to confirm that treatment with dithiothreitol is equivalent to sonication in recovering bacteria from biofilm grown on inert surface. Combining dithiotreitol treatment with sonication does not significantly improve bacterial recovery in respect to each treatment alone


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 53 - 53
11 Apr 2023
Vadalà G Di Giacomo G Ambrosio L Cicione C Tilotta V Russo F Papalia R Denaro V
Full Access

This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. Our hypothesis was that irisin would improve hNPC metabolism and proliferation. hNPCs were isolated from intervertebral discs and cultured in alginate beads. hNPCs were exposed to phosphate-buffered saline (PBS) or recombinant irisin (r-irisin) at 5, 10 and 25 ng/mL (n=4). Each experiment was performed in triplicate. Cell proliferation was assessed with trypan blue staining-automated cell counting and PicoGreen assay. Glycosaminoglycan (GAG) content was measured using the DMMB assay. Metabolic activity was assessed with the MTT assay and the Griess Reagent System. Gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and −3, aggrecan, interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was measured by RT-PCR. MTT assay and ADAMTS-5, COL2, TIMP-1 and IL-1β gene expression were evaluated following incubation with 5, 10 and 25 ng/mL r-irisin for 24 hours and subsequent culture with 10 ng/ml IL-1β and vice versa (incubation for 24 hours with IL-1β and subsequent culture with r-irisin). Irisin increased hNPC proliferation (p<0.001), metabolic activity (p<0.05), GAG content (p<0.01), as well as COL2 (p<0.01), aggrecan (p<0.05), TIMP-1 and −3 (p<0.01) gene expression, while decreasing MMP-13 (p<0.05) and IL-1β (p<0.001) mRNA levels. r-irisin pretreatment of hNPCs cultured in pro-inflammatory conditions resulted in a rescue of metabolic activity (p<0.001) and a decrease of IL-1β (p<0.05) levels. Similarly, incubation of hNPCs with IL-1β and subsequent exposure to r-irisin increased hNPC metabolic activity (p<0.001), COL2 gene expression (p<0.05) and decreased IL-1β (p<0.05) and ADAMTS-5 levels (p<0.01). Irisin stimulates hNPC proliferation, metabolic activity, and anabolism by reducing IL-1β and catabolic enzyme expression while promoting matrix synthesis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 67 - 67
22 Nov 2024
Youf R Ruth S Mannala G Zhao Y Alt V Riool M
Full Access

Aim. In trauma surgery, the development of biomaterial-associated infections (BAI) is one of the most common complications affecting trauma patients, requiring prolonged hospitalization and the intensive use of antibiotics. Following the attachment of bacteria on the surface of the biomaterial, the biofilm-forming bacteria could initiate a chronic implant-related infection. Despite the use of conventional local and systemic antibiotic therapies, persistent biofilms involve various resistance mechanisms that contribute to therapeutic failures. The development of in vivo chronic BAI models to optimize antibiofilm treatments is a major challenge. Indeed, the biofilm pathogenicity and the host response need to be finely regulated, and compatible with the animal lifestyle. Previously, a Galleria mellonella larvae model for the formation of an early-stage biofilm on the surface of a Kirschner (K)-wire was established. In the present study, two models of mature biofilm using clinical Staphylococcus aureus strains were assessed: one related to contaminated K-wires (in vitro biofilm maturation) and the second to hematogenous infections (in vivo biofilm maturation). Rifampicin was used as a standard drug for antibiofilm treatment. Method. In the first model, biofilms were formed following an incubation period (up to 7 days) in the CDC Biofilm Reactor (CBR, BioSurface Technologies). Then, after implantation of the pre-incubated K-wire in the larvae, rifampicin (80 mg/kg) was injected and the survival of the larvae was monitored. In the second model, biofilm formation was achieved after an incubation period (up to 7 days) inside the larvae and then, after removing the K-wires from the host, in vitro rifampicin susceptibility assays were performed (according to EUCAST). Results. The first model indicate that in vitro biofilm maturation affects the bacterial pathogenicity in the host, depending on the S. aureus strain used. Furthermore, the more the biofilm is matured, the more the rifampicin treatment efficiency is compromised. The second model shows that, despite the fast in vivo biofilm formation in the host, the number of bacteria, either attached to the surface of the K-wire surface or in surrounding tissue of the larvae, was not increased over time. Conclusions. Altogether, these results allow the establishment of biofilm models using G. mellonella larvae in order to understand the impact of biofilm maturation on both the bacterial pathogenicity and the efficiency of antibiofilm treatments


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 45 - 45
24 Nov 2023
Dendoncker K Putzeys G Cornu O Nieuwenhuizen T Bertrand M Valster H Croes K
Full Access

Aim. Local antibiotics released through a carrier is a commonly used technique to prevent infection in orthopaedic procedures. An interesting carrier in aseptic bone reconstructive surgery are bone chips impregnated with AB solution. Systemically administered Cefazolin (CFZ) is used for surgical site infection prophylaxis however in vitro study showed that fresh frozen and processed bone chips impregnated with CFZ solution completely release the CFZ within a few hours. On the other hand irradiated freeze-dried bone chips, treated with supercritical CO2 (scCO2) have been shown to be an efficient carrier for the antibiotics vancomycine or tobramycine. With this pilot study we wanted to investigate if CFZ solution impregnation of bone chips treated with scCO2 shows a more favorable release pattern of CFZ. Method. The bone chips were prepared using the standard scCO2 protocol and were impregnated with 100 mg/ml cefazolin at different timepoints during the process: before freeze drying (BC type A), after freeze drying (BC type B) and after gamma-irradiation. 0.5g of the impregnated bone grafts were incubated with 5ml of fetal calf serum (FCS) at 37°C. At 2, 4, 6, 8 and 24h of incubation 200µl of eluate was taken for analysis. After 24h the remaining FCS was removed, bone grafts were washed and new FCS (5ml) was added. Consecutive eluate samples were taken at 48, 72 and 96h of incubation. The concentration of CFZ in the eluates was measured with the validated UPLC-DAD method. Analysis was performed in triplicate. Results. The mean concentration of CFZ in the eluate obtained from BC type A incubated for 2h was higher compared to BC type B, respectively 581 mg/l and 297 mg/l. However, the elution profile is the same for both types: the CFZ concentration in the eluates drops within the first 24h from 581 mg/l to 365 mg/l (37%) for BC type A and from 297 mg/l to 132 mg/l (56%) for BC type B. After 24h no further significant CFZ release is seen. Impregnation of the bone chips before or after gamma irradiation did not affect this elution profile. Conclusions. Bone chips treated with scCO2 show a comparable elution pattern compared to non-scCO2 treated bone chips. AB release depends on the properties of the AB, making it impossible to copy the same impregnation protocol for different antibiotics. The stability of CFZ in solution at 37°C and its release are a major concern when establishing an impregnation protocol with CFZ


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 30 - 30
1 Dec 2017
Kramer T
Full Access

Aim. Periprosthetic joint infections (PJI) are a rare, but devastating complication. Diagnostic approaches to PJI vary greatly between different centers. Most commonly tissue biopsies and synovial fluid sampling are recommended for identification pathogens causing PJI. However, sensitivity and specificity of those techniques have been shown to be highly dependent on preanalytical factors like time and conditions of transportation, location of sampling, as well as analytical approaches and prolonged incubation for up to 14days. Sonication of explanted orthopedic devices has been shown to be more than only an addition in the diagnosis of PJI. The goal of this study was to evaluate the diagnostic value of sonication in PJI. Method. Retrospective cohort analysis of orthopedic samples sent for sonication from 29 surgical centers between 06/2014–04/2017. Until 07/2015 samples were plated on Columbia-, MacConkey-, Chocolate- and Schaedler agar*, incubated aerobically and anaerobically for up to 14 days. In 07/2015 an additional enrichment of 10ml per aerobic and anaerobic blood culture bottles* was introduced. The bottles were also incubated up to 14days and plated immediately if growth was detected. Results. We evaluated 698 orthopedic samples sent for sonication, of which resulted in growth of one (n=355) or several (n=15) relevant pathogens. Coagulase negative staphylococci were isolated in 162 cases; Staphylococcus aureus was isolated in 67 cases, Propionibacterium spp. In 23 cases, Streptococcus spp. in 14 cases, Gram negative in 44 cases, Enterococcus spp. also in 14 cases and Candida spp. in 3 cases. The necessary time of incubation to growth was further decreased to 1.8 days (range: 0–13) days after introduction of additional incubation of sonicate fluid in blood-culture bottles. 92.7% of all positive samples showed growth before the 8th day of incubation. Conclusions. Sonication of explanted orthopedic devices and culturing of the sonicate fluid provides a fast reliable tool for diagnosing pathogens of PJI/ODAI potentially without the need for prolonged incubation for up to 14 days. The additional incubation of the sonicate fluid in automated blood-culturing systems further improves the limit of detection and the time to growth. *BioMerieux, Marcy étoile


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 13 - 13
4 Apr 2023
Meesters D Groven R Wijnands N Poeze M
Full Access

Nitric oxide is a free radical which in vivo is solely produced during the conversion of the amino acid arginine into citrulline by nitric oxide synthase enzymes. Recently, the importance of nitric oxide on inflammation and bone metabolism has been investigated. However, the knowledge regarding possible in vitro effects of arginine supplementation on chondrogenic differentiation is limited. ATDC5, a cell line which is derived from mouse teratocarcinoma cells and which is characterized as chondrogenic cell line, were proliferated in Dulbecco's Modified Eagle Medium (DMEM)/F12 and subsequently differentiated in proliferation medium supplemented with insulin, transferrin and sodium-selenite and where arginine was added in four different concentrations (0, 7.5, 15 and 30 mM). Samples were harvested after 7 or 10 days and were stored at −80 °C for subsequent RNA isolation for qPCR analysis. To determine chondrogenic differentiation, Alcian Blue staining was performed to stain the proteoglycan aggrecan, which is secreted by differentiated ATDC5 cells. All measurements were performed in triplo. Alcian Blue staining showed a qualitative increase of proteoglycan aggrecan secretion in differentiated ATDC5 cells after treatment with 7 and 15 mM arginine, with additional increased expression of ColII, ColX, Bmp4 and Bmp6. Treatment with 30 mM arginine inhibited chondrogenic differentiation and expression of aforementioned genes, however, Cox-2 and Vegfa gene expression were increased in these samples. Bmp7 was not significantly expressed in any experimental condition. The obtained results are suggestive for a dose-dependent effect of arginine supplementation on chondrogenic differentiation and associated gene expression, with 7.5 and 15 mM as most optimal concentrations and implications for apoptosis after incubation with 30 mM arginine. A future recommendation would be to investigate the effects of citrulline in a similar experiment, as this shows even more promising results to enhance the nitric oxide metabolism in sepsis and bone healing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 68 - 68
17 Apr 2023
Lazaro-Pacheco D Holsgrove T
Full Access

Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room temperature (26˚C) with a Viability/Cytotoxicity Kit containing Calcein AM and Ethidium Ethidium homodimer-1 for 2 hr, followed by flash freezing in liquid nitrogen. Thirty µm sections were placed in glass slides and sealed with nail varnish or Antifade Mounting Medium. The IVD tissue was imaged within the next 4h after freezing using an inverted confocal laser-scanning microscope equipped with 488 and 543 nm laser lines. Cell viability at day 0 (NP: 92±9.6 % and AF:80±14.0%) and day 7 (NP: 91±7.9% and AF:76±20%) was successfully maintained and evaluated. The incubation time required is dependent on the working temperatures and tissue thickness. The calcein-AM dye will not be retained in the cells for more than four hours. The specimen preparation and culturing protocol have demonstrated good cell viability at day 0 and after seven days of culture. Processing times and sample preparation play an essential role as the cell viability components in most kits hydrolyse or photobleach quickly. A step-by-step replicable protocol for evaluating the cell viability in IVD will facilitate the evaluation of cell and toxicity-related outcomes of biomechanical testing protocols and IVD regenerative therapies


Full Access

Matrix metalloproteinase enzymes (MMPs) play a crucial role in the remodeling of articular cartilage, contributing also to osteoarthritis (OA) progression. The pericellular matrix (PCM) is a specialized space surrounding each chondrocyte, containing collagen type VI and perlecan. It acts as a transducer of biomechanical and biochemical signals for the chondrocyte. This study investigates the impact of MMP-2, -3, and -7 on the integrity and biomechanical characteristics of the PCM. Human articular cartilage explants (n=10 patients, ethical-nr.:674/2016BO2) were incubated with activated MMP-2, -3, or -7 as well as combinations of these enzymes. The structural degradative effect on the PCM was assessed by immunolabelling of the PCM's main components: collagen type VI and perlecan. Biomechanical properties of the PCM in form of the elastic moduli (EM) were determined by means of atomic force microscopy (AFM), using a spherical cantilever tip (2.5µm). MMPs disrupted the PCM-integrity, resulting in altered collagen type VI and perlecan structure and dispersed pericellular arrangement. A total of 3600 AFM-measurements revealed that incubation with single MMPs resulted in decreased PCM stiffness (p<0.001) when compared to the untreated group. The overall EM were reduced by ∼36% for all the 3 individual enzymes. The enzyme combinations altered the biomechanical properties at a comparable level (∼36%, p<0.001), except for MMP-2/-7 (p=0.202). MMP-induced changes in the PCM composition have a significant impact on the biomechanical properties of the PCM, similar to those observed in early OA. Each individual MMP was shown to be highly capable of selectively degrading the PCM microenvironment. The combination of MMP-2 and -7 showed a lower potency in reducing the PCM stiffness, suggesting a possible interplay between the two enzymes. Our study showed that MMP-2, -3, and -7 play a direct role in the functional and structural remodeling of the PCM. Acknowledgements: This work was supported by the Faculty of Medicine of the University of Tübingen (grant number.: 2650-0-0)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 40 - 40
14 Nov 2024
Siverino C Sun Q Yang D Solomon B Moriarty F Atkins G
Full Access

Introduction. Bone and joint infection (BJI) is often characterized by severe inflammation and progressive bone destruction. Osteocytes are the most numerous and long-lived bone cell type, and therefore represent a potentially important long-term reservoir of bacterial infection. Staphylococcus aureus is known to establish stable intracellular osteocytic infections, however, little is known about the less virulent yet second most prevalent BJI pathogen, S. epidermidis, associated with late-diagnosed, chronic BJI. Thus, this study sought to establish an in vitro model to study the infection characteristics of S. epidermidis in human osteocyte-like cells. Methods. SaOS2 cells (1 ×10. 4. cells/cm. 2. ) were grown to confluence either without differentiation, representing an osteoblast-like (OB) state (SaOS2-OB) or differentiated to an osteocyte-like stage (SaOS2-OY), using established methods. Four S. epidermidis strains used (ATCC-12228, ATCC-14990, ATCC-35984 and a clinical osteomyelitis strain RAH-SE1) were tested to be Lysostaphin-resistant, necessitating antibiotic (Levofloxacin) control of extracellular bacteria. Infection of host cells (OB or OY) was tested at three multiplicities of infection (MOI: 10, 100 and 1000). Extracellular bacteria were controlled by overnight incubation at a 10X minimum inhibitory concentration (MIC) of Levofloxacin and thereafter at 1XMIC. At each time point (days 1, 3, 5) viable intra- and extracellular bacteria were quantified. Result. All strains displayed similar intracellular infection and persistence capabilities in SaOS2-OB and SaOS2-OY. Independent of MOI, intracellular bacteria in SaOS2-OB decreased over time, becoming non-culturable by day 5. In contrast, SaOs2-OY displayed enhanced intracellular bacterial persistence at each time point. In the presence of increased Levofloxacin concentration (10XMIC), S. epidermidis could persist intracellularly for at least 14 days. Conclusion. This study showed for the first time that S. epidermidis can infect human osteocytes and persist intracellularly. Additionally, even a 10xMIC antibiotic concentration failed to eradicate intracellular bacteria, suggesting that persistence within osteocytes could contribute to treatment failure and establishment of chronic BJI


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 78 - 78
24 Nov 2023
Bernaus M Carmona F De Espinosa Vázquez de Sola JML Valentí A Abizanda G Cabodevilla AR Torres D Calero JA Font L Del Pozo JL
Full Access

Aim. To provide proof of concept in an in vivo animal model for the prevention of prosthetic joint infection prevention using electric fields along with conventional antibiotic prophylaxis. Corresponding Author: Marti Bernaus. Method. First, we standardized the animal model to simulate implant contamination during the surgical procedure. We then implanted cobalt-chrome prostheses adapted to both knees of two New Zealand White rabbits, under standard aseptic measures and antibiotic prophylaxis with cefazolin. Prior to implantation, we immersed the prostheses in a 0.3 McFarland inoculum of S. aureus (ATCC 25923) for 30 seconds. In the first animal (control), the joint was directly closed after washing with saline. In the second animal (case), both prostheses were treated with electric current pulses for 30 seconds, washed with saline, and the joint was closed. After 72 hours, both animals were reoperated for the collection of periprosthetic tissue and bone samples, and prosthesis removal. In all samples, we performed quantitative cultures prior to vortexing and sonication, as well as prolonged cultures of the sonication broth. We confirmed the absence of contamination by identification with MALDI-TOF (VITEK-MS) and automated antibiotic susceptibility testing of the isolated colonies (VITEK-2). Results. In the “control” animal, we isolated S. aureus in all studied samples. The bacterial count expressed as log10 (cfu/cm2) in the prostheses of the right and left legs was 9.38 and 8.86, respectively. The bacterial count expressed as log10 (cfu/mL) in bone and periprosthetic tissue biopsies was 2.70 and 2.72 in the right leg and 3.24 and 3.87 in the left leg, respectively. In the “case” animal, where an electric field was applied to the implant after placement in addition to cefazolin prophylaxis, all samples (prosthesis, bone, and periprosthetic tissue) were negative, and no isolation of the inoculated strain of S. aureus was obtained after incubation of the sonication broth for 14 days. Conclusions. This in vivo model suggests the potential effectiveness of applying an electric field to a prosthetic implant in combination with cefazolin for the prevention of PJI development, after exposure of the implant to an inoculum of S. aureus (ATCC 25923). Our findings need to be confirmed using a larger sample size


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 10 - 10
19 Aug 2024
Thomson AL Chao CA Hammad M Mendia M Bostrom MPG Carli AV
Full Access

Retained polymethylmethacrylate (PMMA) debris in surgical instrument trays is a rare, but disquieting situation for the arthroplasty surgeon. Although retained debris could be considered to be sterile after autoclaving, there is no peer-reviewed literature to support this assumption. This uncertainty and subsequent fear of contamination from this bioburden often leads to operating room personnel turning over entire surgical tables and opening new surgical instruments, which consumes time and burdens a hospital's sterilization infrastructure. Consequently, the purpose of the current study was to determine if retained, heavily contaminated PMMA in surgical trays could be effectively sterilized through clinically utilized autoclave protocols. MSSA (Xen36, Perkin Elmer) biofilm was grown on identically sized PMMA (Palacos R) coupons for 72-hour duration. Following incubation, coupons were exposed to three commonly used sterilization protocols. Cobalt-Chrome (CC) coupons were included in the same tray, replicating instruments in proximity to retained PMMA. Autoclave protocols included: 1.) Single Instrument Flash protocol: Pre-vac, 270° F, 10 min exposure, 1 min drying, 2.) One Tray OR protocol: Pre-vac, 270° F, 4 min exposure, 1 min drying, and 3.) Standard Post-Operative protocol: Pre-vac, 270° F, 10 min exposure, 60 min drying. Control coupons did not undergo autoclaving. Coupons were then sonicated for 30 minutes in tryptic soy broth and plated to count CFUs. Experiments were performed in quadruplicate. Control coupons showed significant contamination with CFU counts in the range of 10. 6. CFU/mL. CFU counts of zero across all autoclaved PMMA and CC coupons revealed that each protocol was effective in completely eradicating culturable S. aureus, confirming clinical efficacy on orthopaedic cement sterilized in surgical trays. Our findings demonstrate that heavily contaminated PMMA and exposed metal in surgical trays can be effectively sterilized through several autoclaving protocols. Clinicians should feel confident in the efficacy of autoclave protocols in removing bacteria and its associated biofilm from othopaedic materials


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 68 - 68
22 Nov 2024
Mannala G Labat B Ladam G Pascal T Walter N Szymski D Riool M Alt V Rupp M
Full Access

Aim. Orthopedic implants play a tremendous role in fixing bone damages due to aging as well as fractures. However, these implants tend to get colonized by bacteria on the surface, leading to infections and subsequently prevention of healing and osteointegration. Recently, Roupie et al. showed that a nisin layer-by-layer based coating applied on biomaterials has both osteogenic and antibacterial properties. The Galleria mellonella larva is a well-known insect infection model that has been used to test the virulence of bacterial and fungal strains as well as for the high throughput screening of antimicrobial compounds against infections. Recently, we have developed an insect infection model with G. mellonella larvae to study implant-associated biofilm infections using Kirschner (K)-wires as implant material. Here, we would like to test the antibacterial capacity of nisin layer-by-layer based coatings on K-wires against Staphylococcus aureus in the G. mellonella larva implant infection model. Method. Prior to the implantation procedure, G. mellonella larvae are maintained at room temperature on wheat germ in an incubator. The larvae received bare titanium K-wires (uncoated), or either control-coated or nisin-coated K-wires. After one hour, the larvae were injected with 5×10. 5. S. aureus bacteria per larva (i.e., hematogenous implant infection model). Next, the larvae were incubated at 37. o. C in an incubator and the survival of the larvae was monitored for five days. Moreover, the number of bacteria on the implant surface and in the surrounding tissue was determined after 24h of incubation. Further, scanning electron microscopy (SEM) analyses were performed to study the effect of nisin on biofilm formation. Results. The larvae receiving the nisin-coated K-wires showed significantly higher survival rates compared to uncoated titanium K-wires, although not when compared to control-coated K-wires. A more than 1-log reduction in number of bacteria on the implant surface and in the surrounding tissue was observed in larvae receiving the nisin-coated K-wires, when compared to uncoated titanium K-wires SEM analysis showed reduced colonization of the bacteria nisin-coated K-wires compared to the controls. Conclusions. In conclusion, the antimicrobial nisin layer-by-layer based coating applied on titanium surfaces is able to prevent implant-related S. aureus biofilm infection in G. mellonella and is a promising antimicrobial strategy to prevent implant-related infections


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 42 - 42
22 Nov 2024
Mu W Tarabichi S Xu B Wang F Li Y Lizcano JD Zhang X Parvizi J Cao L
Full Access

Aim. This study aimed to evaluate the impact of intraoperative direct sonication on the yield of traditional culture and the time to positivity (TTP) of cultures obtained for periprosthetic joint infection (PJI), thereby assessing its potential to improve diagnostic efficiency and reduce contamination risk. Method. A prospective cohort study was conducted at a tertiary care center, involving 190 patients undergoing revision surgery for PJI from August 2021 to January 2024. Patients were included based on the 2018 International Consensus Meeting definition of PJI. The study utilized a novel sonication protocol, which involved direct intraoperative sonication of the implant and tissue, followed by incubation in a BACT/ALERT 3D system. The primary outcomes measured were the number and percentage of positive culture samples, identified microorganisms, and the TTP of each culture. Statistical analysis was performed using R software, with various tests applied to assess the significance of findings. Results. The study included 510 positive cultures from 190 patients, demonstrating that sonication significantly improved the positivity rate for both tissue and prosthesis specimens (p < 0.05). The median TTP for all samples was 3.13 days, with sonicated samples showing a significantly shorter TTP compared to non-sonicated samples (p < 0.05). Specifically, the shortest median TTP was observed in prosthesis post-sonication samples. Furthermore, the study found that Gram-positive organisms had a shorter TTP than gram-negative organisms, and specific microorganisms like Staphylococcus aureus and MRSE showed the fastest TTP. The analysis also revealed higher positivity rates in chronic PJIs compared to acute PJIs for sonicated tissue samples. Conclusions. The study demonstrates that intraoperative direct sonication combined with the BACT/ALERT 3D system can significantly enhance the diagnostic yield of cultures and reduce the TTP for common PJI pathogens. This novel technique not only improves pathogen detection, facilitating the tailoring of antibiotic therapy, but also potentially reduces the risk of contamination associated with sonication. These findings suggest that direct intraoperative sonication could be a valuable addition to the current diagnostic protocols for PJI, contributing to more effective management and treatment of this complex condition. Further research is necessary to explore the clinical significance of TTP and its correlation with patient outcomes in PJI


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 79 - 79
1 Oct 2022
Bernaus M Cubillos YL Soto S Bermúdez A Calero JA Torres D Veloso M Font-Vizcarra L
Full Access

Aim. To evaluate the efficiency of pulse lavage combined with electrical fields to remove biofilm from a metallic surface. Method. Using a 12-well culture plate designed for the application of electrical fields, strains of S. epidermidis were incubated at each well for 24 hours at 37ºC. After incubation, supernatant culture medium was removed, and each well was filled with 3ml of normal saline. Six different models were compared: a) control, b) low-pressure pulse lavage, c) high-pressure pulse lavage, d) pulsed electrical fields, e) low-pressure pulse lavage in combination with pulsed electrical fields, and f) high-pressure pulse lavage in combination with pulsed electrical fields. In all cases, exposure time was set to 25 seconds. In the electrical field models, 50 pulses were applied. After exposure, each bottom electrode was scraped carefully to release adhered bacteria. Subsequently, different dilutions of biofilm removed were spread onto Müller Hinton agar plates and incubated for 24h at 37 ºC, and colony-forming units (CFU) per milliliters were counted. Bacterial counts were then compared to the control model. Results. High-pressure pulse lavage combined with pulsed electrical fields showed the greatest biofilm removal with reductions of up to 11.9 logarithms when compared to the control group. The lowest reduction was achieved by low-pressure pulsed lavage (4.7 logs). All reductions showed statistically significant differences. Conclusion. The results of our comparative study between different models demonstrates high reduction rates for biofilm removal. Further in vivo studies are needed to evaluate the capacity of the combination of high-pressure pulse lavage with pulsed electrical fields in removing bacterial biofilm in real conditions