Introduction. Posterior
Aims. The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids. Methods. Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify
Aims. The aim of this study was to determine whether there is a correlation between the grade of humeral osteoarthritis (OA) and the severity of glenoid morphology according to Walch. We hypothesized that there would be a correlation. Methods. Overal, 143 shoulders in 135 patients (73 females, 62 males) undergoing shoulder arthroplasty surgery for primary glenohumeral OA were included consecutively. Mean age was 69.3 years (47 to 85). Humeral head (HH), osteophyte length (OL), and morphology (transverse decentering of the apex, transverse, or coronal asphericity) on radiographs were correlated to the glenoid morphology according to Walch (A1, A2, B1, B2, B3), glenoid retroversion, and humeral subluxation on CT images. Results. Increased humeral OL correlated with a higher grade of glenoid morphology (A1-A2-B1-B2-B3) according to Walch (r = 0.672; p < 0.0001). It also correlated with glenoid retroversion (r = 0.707; p < 0.0001), and posterior humeral subluxation (r = 0.452; p < 0.0001). A higher humeral OL (odds ratio (OR) 1.17; 95% confidence interval (CI) 1.03 to 1.32; p = 0.013), posterior humeral subluxation (OR 1.11; 95% CI 1.01 to 1.22; p = 0.031), and glenoid retroversion (OR 1.48; 95% CI 1.30 to 1.68; p < 0.001) were independent factors for a higher glenoid morphology. More specifically, a humeral OL of ≥ 13 mm was indicative of eccentric glenoid types B2 and B3 (OR 14.20; 95% CI 5.96 to 33.85). Presence of an aspherical HH in the coronal plane was suggestive of glenoid types B2 and B3 (OR 3.34; 95% CI 1.67 to 6.68). Conclusion. The criteria of humeral OL and HH morphology are associated with increasing glenoid retroversion, posterior humeral subluxation, and eccentric
Introduction. Posterior
Introduction. Due to the predictability of outcomes achieved with reverse shoulder arthroplasty (rTSA), rTSA is increasingly being used in patients where glenoid fixation is compromised due to presence of
INTRODUCTION. Preoperative planning software for anatomic total shoulder arthroplasty (ATSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of
Reverse total shoulder arthroplasty (RTSA) has a proven track record as an effective treatment for a variety of rotator cuff deficient conditions. However, glenoid erosion associated with the arthritic component of these conditions can present a challenge for the shoulder arthroplasty surgeon. Options for treatment of
Severe glenoid bone loss in patients with osteoarthritis with intact rotator cuff is associated with posterior glenoid bone loss and posterior humeral subluxation. Management of severe glenoid bone loss during shoulder arthroplasty is controversial and technically challenging and options range from humeral hemiarthroplasty, anatomic shoulder replacement with glenoid bone grafting or augmented glenoid component implantation, to reverse replacement with reaming to correct version or structural bone grafting or metallic augmentation of the bone deficiency. Shoulder replacement with severe glenoid bone loss is technically challenging and characterised by higher rates of complications and revisions. Hemiarthroplasty has limited benefit for pain relief and function especially if eccentric
Background. Virtual planning of shoulder arthroplasty has gained recent popularity. Combined with patients specific instrumentation, several systems have been developed that allow the surgeon to accurately appreciate and correct glenoid deformities in version and inclination. While each virtual software platform utilizes a consistent algorithm for calculating these measurements, it is imperative for the surgeon to recognize any differences that may exist amongst software platforms and characterize any variability. Methods. A case-control study of all CT scans of patients previously pre-operatively planned using MatchPoint SurgiCase® software were uploaded into the BluePrint software. The cohort represents surgical planning for total shoulder arthroplasty and reverse shoulder arthroplasty with varying degrees of glenoid deformity. Glenoid version and inclination will be recorded for each CT scan using both software platforms. Results. A total of 38 patient CT scans previously planned using MatchPoint Surgicase® software were uploaded into the BluePrint software. The mean difference for glenoid version between the two software programs was 2.497° (±1.724°) with no significant differences in measured glenoid version readings between BluePrint and SurgiCase software (p=0.8127). No significant differences were seen in the measured glenoid inclination between the two software programs (p=0.733), with a mean difference for glenoid inclination between the two software programs at 5.150° ± 3.733° (figure 1). A Bland-Altman plot determined the 95% limits of agreement between the two programs at −5.879 to 6.116 degrees of glenoid version and −12.05 to 12.75 degrees of glenoid inclination. There was a significant statistical agreement between the two software programs measuring glenoid version and inclination in relation to
A primary goal of shoulder arthroplasty is to place the components in anatomic version. However, traditional instrumentation does not accommodate
Background. Rotator cuff atrophy evaluated with computed tomography scans has been associated with asymmetric
Introduction: The Copeland Shoulder prosthesis was developed as an alternative to the more traditional prostheses. This cementless design differs in that it resurfaces, rather than replaces, the native humeral head. The obvious advantage of this design is only a minimum of bone is removed thus preserving bone stock for future revisions if needed. There exists little in the orthopaedic literature concerning the clinical results of patients with a Copeland shoulder prosthesis. Materials and methods: Twenty-four patients receiving a Copeland hemiarthroplasty were identified at our institution between 1997 and 1999. All operations were performed by the senior author. A minimum of one-year follow-up was essential. Nineteen patients with twenty shoulders were available for follow-up at a mean of 2.2 years. Patients’ charts and operative reports were examined, and patients’ received retrospective pre-operative and prospective post-operative application of the constant score. AP and axillary lateral radiographs were examined for component position, evidence of osteolysis, and
The treatment of proximal humerus fractures remains controversial. The literature is full of articles and commentary supporting one method over another. Options include open reduction and internal fixation, hemiarthroplasty, and reverse shoulder arthroplasty. Treatment options in an active 65-year-old are exceptionally controversial given the fact that people in this middle-aged group still wished to remain active and athletic in many circumstances. A hemiarthroplasty offers the advantage of a greater range of motion, however, this has a high incidence of tuberosity malunion or nonunion and this is a very common reason for revision of that hemiarthroplasty for fracture to a reverse shoulder replacement. One recent study showed a 73% incidence of tuberosity malunion or nonunion in shoulders that had a revised hemiarthroplasty to a reverse shoulder replacement. Progressive
INTRODUCTION. Preoperative planning software for reverse total shoulder arthroplasty (RTSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. While anatomical studies have defined the range of normal values for glenoid version and inclination, there is no clear consensus on glenoid component selection and position for RTSA. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of
The indications for use of a glenoid component are: 1.) sufficient degenerative changes on the glenoid to expose the subchondral bone 2.) the glenoid should have sufficient glenoid bone stock to allow for secure and longterm fixation of the component, and 3.) the rotator cuff should be intact or repairable and the humeral head should be centred within the glenoid component. Other factors that secondarily affect the decision to use a glenoid component, include the patient’s age and activity level, which should be such that they are not likely to result in multiple revisions for
Background. The current use of a spherical prosthetic humeral head in total shoulder arthroplasty results in an imprecise restoration of the native geometry and improper placement of the center of rotation, maintained in a constant position, in comparison to the native head and regardless of glenoid component conformity. A radially-mismatched spherical head to allow gleno-humeral translation is a trade-off that decreases the contact area on the glenoid component, which may cause
Background. Use of a baseplate with a smaller diameter in reverse shoulder arthroplasty has been recommended, especially in patients with a small glenoid or insufficient bony stock due to severe
Reverse total shoulder arthroplasty (RTSA) is a well established treatment that provides reproducible results in the treatment of shoulder arthritis and rotator cuff deficiency in the older patient population. However, the results of arthroplasty in younger, more active patients are currently unclear and not as predictable. The purpose of this study is to evaluate the mid-term results of RTSA for patients aged younger than 60 years. A retrospective review of twenty-six patients (twenty six RTSAs) with a mean age of 58.3 years was performed. Minimum follow-up of 5 years was available at a mean follow-up of 73.3 months postoperatively (range, 60–84 months). The preoperative conditions compelling RTSA were as follows: failed rotator cuff repair (17), fracture sequelae (5), failed arthroplasty (1), and cuff tear arthropathy (CTA) (3). We assessed range-of-motion and strength, visual analog scale, American Shoulder and Elbow Surgeons (ASES), and Constant scores. Radiographs were also evaluated for component loosening and scapular notching. All patients were analyzed radiologically and clinically using patient-reported outcome measures. Active forward elevation improved from 56° to 134° and average active external rotation improved from 10.0° to 19.6°. Scores measured with a visual analog pain scale, the Constant score, and the American Shoulder and Elbow Surgeons (ASES) scale all improved significantly. The Visual analog scale (VAS) score for pain improved from 7.5 to 3.0 and the ASES score improved from 31.4 to 72.4, respectively. The normalized postoperative mean Constant score was 88.03. No radiograph showed loosening of the implant at follow-up. Complications included one traumatic subscapularis rupture at six weeks, and one case of periprosthetic fracture. The remaining twenty-four patients were satisfied with the outcome at the time of the latest follow-up and had returned to their desired activity. RTSA in younger patients provided significant subjective improvement in self-assessed shoulder comfort and substantial gain in overall function. Implant loosening and
Contracture of the anterior musculature causes posterior humeral head subluxation and results in a posterior load concentration on the glenoid. This reduced contact area causes
Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available. Cite this article: