Advertisement for orthosearch.org.uk
Results 1 - 20 of 30
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 51 - 51
17 Apr 2023
Al-Musawi H Sammouelle E Manara J Clark D Eldridge J
Full Access

The aim is to investigate if there is a relation between patellar height and knee flexion angle. For this purpose we retrospectively evaluated the radiographs of 500 knees presented for a variety of reasons.

We measure knee flexion angle using a computer-generated goniometer. Patellar height was determined using computer generated measurement for the selected ratios, namely, the Insall–Salvati (I/S), Caton–Deschamps (C/D) and Blackburne–Peel (B/P) indices and Modified I/S Ratio.

A search of an NHS hospital database was made to identify the knee x rays for patients who were below the age of forty. A senior knee surgeon (DC) supervised three trainee trauma and orthopaedics doctors (HA, JM, ES) working on this research. Measurements were made on the Insall–Salvati (I/S), Caton–Deschamps (C/D) and Blackburne–Peel (B/P) indices and Modified I/S Ratio. The team leader then categorised the experimental measurement of patients’ knee flexion angle into three groups. This categorisation was according to the extent of knee flexion. The angles were specifically, 10.1 to 20, 20.1 to 30, and 30.1 to 40 degrees of knee flexion.

Out of the five-hundred at the start of the investigation, four hundred and eighteen patients were excluded because they had had either an operation on the knee or traumatic fracture that was treated conservatively.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 126 - 126
1 May 2016
Weijia C Nagamine R
Full Access

Purpose

Factors influencing flexion angle of the knee before and after PS-TKA were assessed.

Methods

In 368 PS-TKA cases (71 males and 297 females) by means of modified gap control technique with Stryker NRG system, multi-variance analysis was performed to assess factors influencing flexion angle before TKA and flexion angle 3 weeks after TKA. Their mean age was 74.1 years old. Operative techniques and angle of the components were included as the factors.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 63 - 63
1 May 2016
Jenny J Bureggah A Diesinger Y
Full Access

INTRODUCTION

Measurement of range of motion is a critical item of any knee scoring system. Conventional measurements used in the clinical settings are not as precise as required. Smartphone technology using either inclinometer application or photographic technology may be more precise with virtually no additional cost when compared to more sophisticated techniques such as gait analysis or image analysis. No comparative analysis between these two techniques has been previously performed. The goal of the study was to compare these two technologies to the navigated measurement considered as the gold standard.

MATERIAL

Ten patients were consecutively included. Inclusion criterion was implantation of a TKA with a navigation system.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 45 - 45
1 Apr 2019
Athwal K Chan V Halewood C Amis A
Full Access

Introduction

Pre-clinical assessment of total knee replacements (TKR) can provide useful information about the constraint provided by an implant, and therefore help the surgeon decide the most appropriate configurations. For example, increasing the posterior tibial slope is believed to delay impingement in deep flexion and thus increase the maximal flexion angle of the knee, however it is unclear what effect this has on anterior-posterior (AP) constraint.

The current ASTM standard (F1223) for determining constraint gives little guidance on important factors such as medial- lateral (M:L) loading distribution, flexion angle or coupled secondary motions. Therefore, the aim of the study was to assess the sensitivity of the ASTM standard to these variations, and investigate how increasing the posterior tibial slope affects TKR constraint.

Methods

Using a six degree of freedom testing rig, a cruciate-retaining TKR (Legion; Smith & Nephew) was tested for AP translational constraint. In both anterior and posterior directions, the tibial component was displaced until a ‘dislocation limit’ was reached (fig. 1), the point at which the force-displacement graph started to plateau (fig. 2). Compressive joint loads from 710 to 2000 N, and a range of medial-lateral (M:L) load distributions, from 70:30% to 30:70% M:L, were applied at different flexion angles with secondary motions unconstrained. The posterior slope of the tibial component was varied at 0°, 3°, 6° and 9°.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 45 - 45
1 Feb 2017
Kaneko T Hada M Toyoda S Sunakawa T Ikegami H Mochizuki Y Musha Y
Full Access

INTRODUCTION

Normal kinematics have not been achieved in TKA design. Recently, knee simulation studies have suggested that a medial pivot TKA can achieve the anatomic pathway that reduce mid-flextion rollback and increase lateral rotation. However, the influence of postoperative flextion angle associated with medial tightness for guide motion TKA remains poorly understood. The purpose of this study was to investigate the effect of postoperative flextion angle and clinical outcomes associated with tightness for medial component gap (MCP).

METHODS

We evaluated 79 patients who underwent 84 medial pivot The Journey.2. Bi-Cruciate Substituting (BCS) TKA using the measured resection tequnique, from June 2014 to March 2016. We measured the gaps after implantation from extension to full flextion with reduced patella by constant distraction force (120N). A new tensor has the same articular shapes as that the tibial liner, including anterior and posterior structure.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 74 - 74
1 May 2016
Nakano N Matsumoto T Muratsu H Takayama K Kuroda R Kurosaka M
Full Access

Introduction / Purpose

Many factors can influence postoperative knee flexion angle after total knee arthroplasty (TKA), and range of flexion is one of the most important clinical outcomes. Although many studies have reported that postoperative knee flexion is influenced by preoperative clinical conditions, the factors which affect postoperative knee flexion angle have not been fully elucidated. As appropriate soft-tissue balancing as well as accurate bony cuts and implantation has traditionally been the focus of TKA success, in this study, we tried to investigate the influence of intraoperative soft-tissue balance on postoperative knee flexion angle after cruciate-retaining (CR) TKA using a navigation system and offset-type tensor.

Methods

We retrospectively analyzed 55 patients (43 women, 12 men) with osteoarthritis who underwent TKA using the same mobile-bearing CR-type implant (e.motion; B. Braun Aesculap, Germany). The mean age at the time of surgery was 74.2 (SD 7.3) years. The exclusion criteria for this study included valgus deformity, severe bony defect requiring bone graft or augmentation, revision TKA, active knee joint infection, and bilateral TKA. Intraoperative soft-tissue balance parameters such as varus ligament balance and joint component gap were measured in the navigation system (Orthopilot 4.2; B. Braun Aesculap) while applying 40-lb joint distraction force at 0°, 10°, 30°, 60°, 90°, and 120° of knee flexion using an offset-type tensor with the patella reduced. Varus ligament balance was defined as the angle (degree, positive value in varus imbalance) between the seesaw and platform plates of the tensor that was obtained from the values displayed by the navigation system. To determine clinical outcome, we measured knee flexion angle using a goniometer with the patient in the supine position before and 2 years after surgery. Correlations between the soft-tissue parameters and postoperative knee flexion angle were analyzed using simple linear regression models. Pre- and postoperative knee flexion angle were also analyzed in the same manner.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 206 - 206
1 Mar 2013
Jenny J
Full Access

INTRODUCTION

The magnitude of knee flexion angle is a relevant information during clinical examination of the knee, and this item is a significant part of every knee scoring system. It is generally performed by visual analysis or with manual goniometers, but these techniques may be neither precise nor accurate. More sophisticated techniques are only possible in experimental studies. Smartphone technology might offer a new way to perform this measurement with increased accuracy.

MATERIAL

20 patients operated on for unicompartmental or total knee replacement with help of a navigation system participated to the study. There were 13 women and 7 men with a mean age of 72.1 years.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 157 - 158
1 Jul 2002
Davies A Bayer J Owen-Johnstone S Darrah C Shepstone L Glasgow M Donell S
Full Access

A prospective clinical investigation to determine the optimum knee flexion angle for the ‘skyline’ patellofemoral joint radiograph.

Plain radiography of the patello-femoral joint includes the axial or ‘skyline’ radiograph. The optimum knee flexion angle for making this image remains unclear.

We therefore performed a prospective clinical study in which patients underwent three skyline radiographs with knee flexion angles of 30(or minimal flexion), 50 and 90 degrees. The patients were new patients, aged between 12 and 30, presenting to a knee clinic with anterior knee pain. Two observers evaluated the radiographs, making a standardised series of measurements. Blinding was organised so that the observers were unable to use any information other than the radiographic image alone. One observer evaluated all the films on two separate occasions to allow calculation of intra- and interassessor agreement.

There were 67 knees from 46 patients. There was a high level of intra- and inter-observer agreement. There were a number of patients in which the radiographic appearance of the patello-femoral varied markedly between the different views; in all cases the abnormality was best demonstrated by the 30-degree view. There were however a number of minimal flexion views in which the film contained incomplete information because part of the patello-femoral joint was missing from the image.

We conclude that whilst a minimal flexion skyline view is the most sensitive method for the detection of patellar tilt and subluxation, not all knees can be successfully imaged at the required position. A flexible approach is therefore needed, to obtain satisfactory images at minimal flexion.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 40 - 40
1 Jun 2012
Clarke J Spencer S Deakin A Picard F Riches P
Full Access

Assessment of coronal knee laxity via manual stress testing is commonly performed during joint examination. While it is generally accepted that the knee should be flexed slightly to assess its collateral restraints, the importance of the exact degree of flexion at time of testing has not been documented. The aim of this study therefore was to assess the effect of differing degrees of knee flexion on the magnitude of coronal deflection observed during collateral stress testing.

Using non-invasive infrared technology, the real-time coronal and sagittal mechanical femorotibial (MFT) angles of three asymptomatic volunteers were measured. A single examiner, blinded to the real-time display of coronal but not sagittal alignment, held the knee in maximum extension and performed manual varus and valgus stress manoeuvres to a perceived end-point. This sequence was repeated at 5° increments up to 30° of flexion. This provided unstressed, varus and valgus coronal alignment measurements as well as overall envelope of laxity (valgus angle – varus angle) which were subsequently regressed against knee flexion.

Regression analysis indicated that all regression coefficients were significantly different to zero (p < 0.001). With increasing knee flexion, valgus MFT angles became more valgus and varus MFT angles became more. The overall laxity of the knee in the coronal plane increased approximately fourfold with 30° of knee flexion.

The results demonstrated that small changes in knee flexion could result in significant changes in coronal knee laxity, an observation which has important clinical relevance and applications. For example the assessment of medial collateral ligament (MCL) injuries can be based on the perceived amount of joint opening with no reference made to knee flexion at time of assessment. Therefore, close attention should be paid to the flexion angle of the knee during stress testing in order to achieve a reliable and reproducible assessment.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 52 - 52
1 Feb 2017
Kato T Sako S Ito Y Iwata A
Full Access

Introduction

Hip-Spine syndrome has various clinical aspects. For example, schoolchild with severe congenital dislocation of the hip have unfavorable standing posture and disadvantageous motions in ADL. Hip-Spine syndrome is closely related closely as the adjacent lumbar vertebrae and the hip joint. Furthermore, not only the pelvis and the lumbar spine, but also the neck position might influence on the maximum hip flexion angle. In this study, we examined the maximum hip flexion angle and pelvic movement angle by observing the lumbar spine, the pelvis and the neck in three different positions.

Subjects and Methods

The participants were five healthy volunteers (three males and two females) and ranged in age from 16 to 49 years. We measured the hip flexion angle (=∠X) and the pelvic tilt angle (=∠Y), using Zebris WinData and putting the six markers on skin. The positions of the marker are Femur lateral condyle (M1), Greater trochanter (M2), Lateral margin of 10th rib (M3), Anterior superior iliac spine (M4), Superior lateral margin of Iliac (M5), and Acromion (M6). We performed maximum hip flexion three times in three positions and measured ∠X (=∠M1,2,3) and ∠Y (=∠M4,5,6) and calculated the mean and SD of each position. The first position (P1) that we investigated is the regular position specified by the Japanese Orthopedics Association and Rehabilitation Medical Association. The second position (P2) is performed in the limited position of the posterior pelvic tilt and lumbar movement, by placing the tube under the subject's lower back. The third position (P3) is the altered limited position of P2 added by placing the 500ml PET bottle filled water under the back of the subject's neck.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 584 - 585
1 Oct 2010
Dargel J Appell H Koebke J Mader K Pennig D
Full Access

Background: The influence of the knee angle on plantarflexion moments after Achilles tendon repair has yet to be analyzed. It was hypothesized that flexion of the knee joint will disproportionately influence isometric plantarflexion moments after Achilles tendon repair.

Methods: Isometric plantarflexion moments and functional heel rise performance were retrospectively assessed in 32 patients at a mean follow-up of 36.9 (±17.83) months after open or percutaneous repair of acute Achilles tendon rupture. Plantarflexion moments were measured with the knee joint in 0, 30, and 60 degrees of flexion and the ankle joint positioned in neutral, 15 degrees plantar flexion and 15 degrees dorsiflexion. Data were compared between the involved and the noninvolved leg as well as between open and percutaneous repair.

Results: Flexion of the knee had no significant effect on isometric plantarflexion moments in either the involved or the noninvolved leg, while at any knee angle, plantarflexion moments decreased from dorsiflexion to plantar flexion. In accordance, dynamic heel rise performance revealed no significant strength deficits between the involved and the noninvolved limb. No overall differences in plantarflexion strength were observed between open and percutaneous Achilles tendon repair.

Conclusions: The flexion angle of the knee had no influence on plantarflexion moments when comparing the involved with the noninvolved leg after open or percutaneous Achilles tendon repair. Weakness of plantarflexion after open or percutaneous Achilles tendon repair is determined by the position of the ankle joint rather than by the flexion angle of the knee.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 2 - 2
1 Apr 2019
Okamoto Y Otsuki S Okayoshi T Wakama H Murakami T Nakagawa K Neo M
Full Access

Although the pre- or intraoperative flexion angle in TKA has been commonly considered as a predictor of the postoperative flexion angle, patients with well flexion intraoperatively cannot necessarily obtain deep flexion angle postoperatively. The reason why inconsistencies remains has been unsolved. The intraoperative compressive force between femoral and tibial components has the advantage of the sequential changes during knee motion. However, the relationship between the compressive force and the postoperative ROM has not yet been clarified. We aimed to evaluate the intraoperative femorotibial compressive force during passive knee motion, and determine the relationship between the compressive force and the postoperative flexion angle.

A total of 11 knees in 10 patients who underwent primary cruciate-retaining (CR) TKA (The FINE Total Knee System; Teijin Nakashima Medical Co., Ltd., Okayama, Japan) for osteoarthritis were studied retrospectively, with a mean age of 76 years via a measured resection technique. We developed a customized measurement device mimicking the tibial component with this platform of six load sensors arranged in two rows (medial and lateral) by three tandem sets (anterior, center and posterior): anteromedial (AM), anterolateral (AL); centromedial (CM), centrolateral (CL); and posteromedial (PM), posterolateral compartment (PL) (Fig. 1). At the step of the implant trial, this device was placed on the tibia with compressive force recorded three times, while the knee was subsequently taken from 0° to full flexion manually in 15 seconds with the flexion angle of the knee recorded simultaneously by using an electric goniometer (Fig. 2). Eligibility were evaluated for ROM using a long-armed goniometer preoperatively and at 6 months postoperatively. A p value of < 0.05 was considered significant.

The mean compressive force at AM, AL, CM, CL, PM and PL was 0.7, 0.5, 1.3, 1.2, 3.4 and 2.6 kgf, with the peak force of 4.2, 2.5, 4.1, 2.5, 7.3 and 4.7 kgf, respectively. The mean pre- and postoperative extension and flexion angles were −11° and −6°; and 115° and 113°, respectively. There were no significant correlations between the mean force in any region of interest (AM to PL) and the postoperative flexion angle. The peak force in PM showed little correlation with the postoperative flexion angle (r = −0.17, p = 0.54), however, that in PL was strongly negatively correlated with the postoperative flexion (r = −0.86, p < 0.01).

The current results suggest the presence of less force on the lateral side in flexion. We speculate that lower compressive force at the lateral side is essential for deep flexion as it has been reported that the lateral structure has more laxity than the medial side during flexion in healthy knees. Measurement between the femoral and tibial compressive force can contribute an achievement of more flexion angle following CR-TKA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 38 - 38
1 May 2016
Higashi H Kaneyama R Shiratsuchi H Oinuma K Miura Y Tamaki T Jonishi K Yoshii H
Full Access

Objective

In Total Knee Arthroplasty (TKA), it is important to adjust the difference of the flexion-extension gap (gap difference) to get the good range of motion and the sufficient stability. However the effect of the gap adjustment on the post-operative knee flexion angle(KFA) is unknown. We investigated the relationship between the gap difference and the postoperative KFA improvement rate.

Methods

179 knees that underwent LCS RP TKA were investigated more than 6 months after surgery(Feb/2013∼Sep/2014). The patients were 49 men and 130 women, of average age 70.6 years (50∼88) and BMI 26.3 (17.0∼55.2). Among them, 175 knees were knee osteoarthritis and 2 joints were rheumatoid arthritis, 2 joints were avascular necrosis. The extension gap was typically prepared with a measured resection, and a small temporary flexion bone gap was prepared with a 4mm resection of the femoral posterior condyle using the pre-cut method(fig 1). Then we measured the gaps under the installation of the Pre-cut Trial(PT; Kaneyama 2011)by the off-set spacer with 1mm increments in patella reduction position(fig 2,3). The final amount of bone resection was determined by comparison of the measured gaps and gaps required for implantation. We calculated the differences between the final extension gap and the final flexion gap and their relationship with knee flexion angles at 6 months postoperatively were analyzed.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 237 - 237
1 Jun 2012
Takayama K Kubo S Matsumoto T Ishida K Sasaki K Matsushita T Kurosaka M Kuroda R
Full Access

Introduction

Total knee arthroplasty (TKA) with a computer-assisted navigation system has been developed to improve the accuracy of the alignment of osteotomies and implantations. One of the most important goals of TKA is to improve the flexion angle. Although accurate soft tissue balancing has been recognized as an essential surgical intervention influencing flexion angle, the direct relationship between post-operative flexion angle and intra-operative soft tissue balance during TKA, has little been clarified. In the present study, therefore, we focused on the relationship between them in cruciate-retaining (CR) TKA with a navigation system.

Materials and methods

The subjects were 30 consecutive patients (2 men, 28 women), who underwent primary CR TKA (B. Braun Aesculap, e-motion) between May 2006 and December 2009. TKAs were performed using a image-free navigation system (OrthoPilot; B. Braun Aesculap, Tuttlingen, Germany). All cases were osteoarthritis with varus deformity. Average patient age at the time of surgery was 74.0 years (range, 62-86 years). After all bony resections and soft tissue releases were completed appropriately using a navigation system with tibia-first gap technique, a tensor was fixed to the proximal tibia and the femoral trial was fitted. Using the tensor that is designed to facilitate soft tissue balance measurements throughout the range of motion with a reduced patello-femoral (PF) joint and femoral component in place, the joint component gap and ligament balance (varus angle) were measured after the PF joint reduced and femoral component in place (Fig.1). Assessments of joint component gap and ligament balance were carried out at 0°, 30°, 60°, 90°, 120° flexion angle, which were monitored by the navigation system. Joint component gap change values during 30°- 0°, 60°- 0°, 90°- 0°, 120°- 0° flexion angle were calculated. The correlation between post operative flexion angles and pre-operative flexion angle, intra-operative joint component gaps, joint component gap change values and ligament balances were assessed using linear regression analysis.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 130 - 130
1 Mar 2010
Choi C Koo M Park Y Kim J
Full Access

Purpose: We have performed this study to compare the postoperative maximal flexion angle(MFA) of high-flex implants with that of conventional implants in PCL-substituted total knee arthroplasty(TKA).

Materials and Methods: The staged sequential bilateral TKAs were performed in Group 1, 35 patients(70 knees) with osteoarthritis of both knee. The conventional implant and the high-flex implant were both used in each patient by randomized method. The postoperative MFA of both type of implants was measured and analyzed at 1 year after surgery. To evaluate unidentified factors that might influence the results, such as the differences derived from personal characteristics during postoperative rehabilitation process achieving the range of motion of knee, we also analyzed the other patient groups, which were composed of Group 2(10 patients, 20 knees) bilaterally operated with conventional implants, Group 3(7 patients, 14 knees) bilaterally with high-flex implants, Group 4(13 patients, 13 knees) unilaterally with conventional implants and Group 5(17 patients, 17 knees) unilaterally with high-flex implant.

Results: In Group 1, the average postoperative MFA of high-flex implant and that of conventional implant showed no significant difference.(131.7 and 131.9 degree each) The average postoperative MFA in Group 1,2,3,4 and 5 showed no significant difference either.

Conclusion: This study indicates that the high-flex implant alone does not seem to improve the MFA as compared to the conventional implant. The status of the contralateral knee and the personal characteristics during rehabilitation seem to be more important factors in increasing the maximal flexion.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 66 - 66
1 Mar 2013
Sparkes V Brophy R Sheeran L
Full Access

Movement dysfunction resulting in a knee valgus position during weight bearing activity is associated with increased risk of Anterior Cruciate Ligament injury and Patellofemoral Pain Syndrome especially in young active females. In clinical practice determining the critical knee flexion angle (CKFA) during a single leg squat (SLS) test is used to assess this dysfunction, yet its reliability is unknown. This study aimed to determine rater agreement in determining the presence of knee valgus movement (yes/no) during a SLS test in recreational females (n = 16, age 24.3 ±7.9 yrs, height 165.7±4.8m, mass 62.5±6.4kg) and the intra and inter-rater reliability of measuring CKFA using SiliconCoach™. Three experienced physiotherapists viewed 48 randomised SLS test videos. One physiotherapist repeated the viewing for test-retest analysis. Test-retest agreement for rating SLS test was acceptable (weighted kappa (k) = 0.667). Inter-rater agreement was moderate to substantial (weighted k = 0.284–0.613). Intra-rater reliability of CKFA was acceptable for all three raters (ICC>0.6). Inter-rater absolute reliability was below 5% of the mean CKFA (SEM 4.26 degrees). As previous research reports intra-rater agreement is better than inter-rater agreement when assessing movement dysfunction during functional activity via visual rating. Intra-rater within session and between session reliability for measuring the CKFA using SiliconCoach™ was acceptable and better than inter-rater reliability. Further research is needed to assess the concurrent and construct validity of the protocols used in this study. It is recommended that qualitative research be performed to identify factors that affect physiotherapist's rating of functional activities.


Introduction

In the previous study regarding the relationship among maximum hip flexion, the pelvis, and the lumbar vertebrae on the sagittal plane, we have found in X-rays that the lumbo lordotic angle (LLA) and the sacral slope angle (SSA) have a large impact on hip flexion angle. We examined hip flexion angles to the various height of the objects (half round plastic tube) placed under the subject's lower back and compared the passive hip flexion angles in the supine position between younger and middle age groups.

Participants

The participants were 14 healthy volunteers: 7 females with an average age of 17 years (Group 1: G-1), 7 females with an average age of 45 years (Group 2: G-2). The average BMI (Body Mass Index) of volunteers was less than 25, and their Tomas Tests were negative.


Patellofemoral pain syndrome (PFPS) is a common knee disorder in active individuals. Movement dysfunction of valgus positioning at the knee during weight-bearing is frequently seen in PFPS. A single-leg squat (SLS) is a test commonly used in physiotherapy to assess for movement dysfunction. Kinesio-Tape (KT) is gaining in popularity in treating PFPS and claims to alter muscle recruitment and motor control, however evidence is weak. Objective: To evaluate the effect of KT applied to the quadriceps on muscle activity with electromyography (EMG) of the rectus femoris, vastus lateralis and vastus medialis oblique and motor control via the frontal plane projection angle (FPPA) using 2-dimensional video analysis.

A convenience sample of healthy females were recruited and performed 5 single-leg squats with and without KT. EMG of the quadriceps was recorded and dynamic valgus assessed via the FPPA using Dartfish video analysis software. Eccentric and concentric EMG data was recorded and the FPPA measured in single-leg stance and the depth of the squat. Institutional ethical approval was obtained for the study.

16 active females were assessed (mean age 28.94 +6.58 years). Wilcoxon signed-rank tests found no significant change in eccentric or concentric EMG of the quadriceps (%MVC) with KT compared to without (p values 0.35–0.86). Paired-sample t-tests found no significant difference in FPPA between conditions in single-leg stance (p=1.00) or the depth of the squat (p=0.871).

KT did not affect EMG activity of the quadriceps or the FPPA in a SLS when applied to the quadriceps of healthy females, questioning proposed effects of KT on normal muscle tissue. Further research is required into the efficacy of using KT in physiotherapy.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 42 - 42
1 Mar 2021
Williams S Jones A Wilcox R Isaac G Traynor A Board T Williams S
Full Access

Abstract. Objectives. Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement. Methods. A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded. Results. There was found to be a significant (p<0.05) inverse relationship between the ROM of the THR and the lateral measure of the AIIS. Of the three measures, the lateral AIIS measure showed the strongest relationship with ROM to impingement (R=0.73) with the anterior and superior measures resulting in R values of 0.41 and 0.56 respectively. For every millimetre lateral the AIIS location, there was typically a loss of 1.2° of range of motion. With increasing lateralisation, the AIIS was positioned more directly over the femur, thereby reducing the ROM in the THR during high flexion positions. No soft tissue was included in the models which would have affected the ROM. Conclusions. The results from this study have shown that the lateral measure of the AIIS could be a predictor for bone-on-bone impingement. To build confidence, wider study of AIIS location variation is needed, as well as analysis under impingement prone activities of daily living. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 27 - 27
1 Feb 2017
Iriuchishima T Ryu K
Full Access

Purpose. the purpose of this study was to compare the rollback ratio in the bi-cruciate substituting BCS-TKA and the Oxford UKA. Methods. 20 subjects (28 knees) who were performed the BCS-TKA (Journey II: Smith and Nephew) and 24 subjects (29 knees) who were performed the Oxford UKA, were included in this study. Approximately 6 months after surgery, and when the subjects recovered their range of knee motion, following the Laidlow's method (The knee 2010), lateral radiographic imaging of the knee was performed with active full knee flexion. The most posterior tibiofemoral contact point was measured for evaluation of femoral rollback (Rollback ratio). Flexion angle was also measured using the same radiograph and the correlation of rollback and flexion angle was analyzed. As a control, radiographs of the contralateral knees of who were performed Oxford UKA were evaluated (29 knees). Results. The rollback ratios of the BCS-TKA, Oxford UKA, and the control knees were 37.9±4.9%, 35.7±4.2%, and 35.3±4.8% respectively from the posterior edge of the tibia. No significant difference in rollback ratio was observed. The flexion angles of the BCS-TKA, Oxford UKA, and the control knees were 121.8±8.4°, 125.4±7.5°, and 127±10.3°, respectively. No significant difference in knee flexion angle was observed. Significant correlation between rollback ratio and knee flexion angle was observed (p=0.002: Pearson's correlation coefficient =−0.384). Conclusion. In conclusion, BCS-TKA showed no significant difference of rollback ratio when compared with the control knees and the Oxford UKA knees. There is the possibility that the design of BCS-TKA could reproduce the native ACL and PCL function