Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 14 - 14
1 Mar 2021
Au K Gammon B Undurraga S Culliton K Louati H D'Sa H
Full Access

The clinical diagnosis of distal radioulnar joint (DRUJ) instability remains challenging. The current diagnostic gold standard is a dynamic computerized topography (CT) scan. This investigation compares the affected and normal wrists in multiple static positions of forearm rotation.. However, its accuracy has been questioned, as the wrist is unloaded and not placed under stress. This may fail to capture DRUJ instability that does not result in static malalignment between the ulnar head and sigmoid notch. The purpose of this biomechanical study was to evaluate the effectiveness of both dynamic and stress CT scans in detecting DRUJ instability. A customized DRUJ arthrometer was designed that allows for both static positioning, as well as dorsal and volar loading at the DRUJ in various degrees of forearm rotation. Ten fresh frozen cadavers were prepared and mounted in the apparatus. CT scans were performed both in the unloaded condition (dynamic CT) and with each arm subjected to a standardized 50N volar and dorsal force (stress CT) in neutral and maximum pronation/ supination. The TFCC (triangular fibrocartilage complex)was then sectioned peripherally to simulate DRUJ instability and the methodology was repeated. CT scans were then evaluated for displacement using the radioulnar ratio method. When calculating the radioulnar ratio for intact wrists using the dynamic CT technique, values were 0.50, 0.64, 0.34 for neutral, pronation and supination, respectively. When the TFCC was sectioned and protocol repeated, the values for the simulated unstable wrist for dynamic CT were 0.54, 0.62, 0.34 for neutral, pronation and supination, respectively. There was no statistically significant difference between the intact and sectioned states for any position of forearm rotation using dynamic CT. Usingstress CT, mean radioulnar ratios for the intact specimens were calculated to be 0.44, 0.36 and 0.31 for neutral, pronation and supination, respectively. After sectioning the TFCC, the radioulnar ratios increased to 0.61, 0.39 and 0.46 for neutral, pronation and supination. There was a statistically significant difference between intact and simulated-unstable wrists in supination (p = 0.002) and in neutral (p=0.003). The radioulnar ratio values used to measure DRUJ translation for dynamic CT scans were unable to detect a statistically significant difference between stable and simulated unstable wrists. This was true for all positions of forearm rotation. However, when a standard load was placed across the DRUJ, statically significant changes in the radioulnar ratio were seen in neutral and supination between stable and simulated unstable wrists. This discrepancy challenges the current gold standard of dynamic CT in its ability to accurately diagnosis DRUJ instability. It also introduces stress CT as a possible solution for diagnosing DRUJ instability from peripheral TFCC lesions


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 11 - 11
1 Mar 2021
Wong M Wiens C Kooner S Buckley R Duffy P Korley R Martin R Sanders D Edwards B Schneider P
Full Access

Nearly one quarter of ankle fractures have a recognized syndesmosis injury. An intact syndesmosis ligament complex stabilizes the distal tibio-fibular joint while allowing small, physiologic amounts of relative motion. When injured, malreduction of the syndesmosis has been found to be the most important independent factor that contributes to inferior functional outcomes. Despite this, significant variability in surgical treatment remains. This may be due to a poor understanding of normal dynamic syndesmosis motion and the resultant impact of static and dynamic fixation on post-injury syndesmosis kinematics. As the syndesmosis is a dynamic structure, conventional CT static images do not provide a complete picture of syndesmosis position, giving potentially misleading results. Dynamic CT technology has the ability to image joints in real time, as they are moved through a range-of-motion (ROM). The aim of this study was to determine if syndesmosis position changes significantly throughout ankle range of motion, thus warranting further investigation with dynamic CT. This is an a priori planned subgroup analysis of a larger multicentre randomized clinical trial, in which patients with AO-OTA 44-C injuries were randomized to either Tightrope or screw fixation. Bilateral ankle CT scans were performed at 1 year post-injury, while patients moved from maximal dorsiflexion (DF) to maximal plantar flexion (PF). In the uninjured ankles, three measurements were taken at one cm proximal to the ankle joint line in maximal DF and maximal PF: Anterior (ASD), middle (MSD), and posterior (PSD) syndesmosis distance, in order to determine normal syndesmosis position. Paired samples t-tests compared measurements taken at maximal DF and maximal PF. Twelve patients (eight male, six female) were included, with a mean age of 44 years (±13years). The mean maximal DF achieved was 1-degree (± 7-degrees), whereas the mean maximal PF was 47-degrees (± 8-degrees). The ASD in DF was 3.0mm (± 1.1mm) versus 1.9mm (± 0.8mm) in PF (p<0.01). The MSD in DF was 3.3mm (±1.1mm) versus 2.3mm (±0.9mm) in PF (p<0.01). The PSD in DF was 5.3mm (±1.5mm) versus 4.6mm (±1.9mm) in PF (p<0.01). These values are consistent with the range of normal parameters previously reported in the literature, however this is the first study to report the ankle position at which these measurements are acquired and that there is a significant change in syndesmosis measurements based on ankle position. Normal syndesmosis position changes in uninjured ankles significantly throughout range of motion. This motion may contribute to the variation in normal anatomy previously reported and controversies surrounding quantifying anatomic reduction after injury, as the ankle position is not routinely standardized, but rather static measurements are taken at patient-selected ankle positions. Dynamic CT is a promising modality to quantify normal ankle kinematics, in order to better understand normal syndesmosis motion. This information will help optimize assessment of reduction methods and potentially improve patient outcomes. Future directions include side-to-side comparison using dynamic CT analysis in healthy volunteers


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 22 - 22
1 Jul 2020
Wong M Buckley R Duffy P Korley R Martin R Harrison T Sanders DW Schneider P Wiens C
Full Access

The syndesmosis ligament complex stabilizes the distal tibiofibular joint, while allowing for the subtle fibular motion that is essential for ankle congruity. Flexible fixation with anatomic syndesmosis reduction results in substantial improvements in functional outcomes. New dynamic CT technology allows real-time imaging, as the ankle moves through a range of motion. The aim of this study was to determine if dynamic CT analysis is a feasible method for evaluating syndesmosis reduction and motion following static and flexible syndesmosis fixation. This is a subgroup analysis of a larger multicenter randomized clinical trial, in which patients with AO 44-C injuries were randomized to either Tightrope (one knotless Tightrope, Group T) or screw fixation (two 3.5-mm cortical screws, Group S). Surgical techniques and rehabilitation were standardized. Bilateral ankle CT scans were performed at one year post-injury, while patients moved from maximal dorsiflexion (DF) to maximal plantar flexion (PF). Three measurements were taken at one cm proximal to the ankle joint line in maximal DF and maximal PF: anterior, midpoint, and posterior tibiofibular distances. T-tests compared Group T and Group S, and injured and uninjured ankles in each group. Fifteen patients (six Group T [three male], nine Group S [eight male]) were included. There was no difference for mean age (T = 42.8 ± 14.1 years, S = 37 ± 12.6, P = 0.4) or time between injury and CT scan (T = 13 ± 1.8 months, S = 13.2 ± 1.8, P = 0.8). Of note in Group S, seven of nine patients had at least one broken screw and one additional patient had screws removed by the time of their dynamic CT. There was no significant difference between treatment groups for tibiofibular distance measurements in maximal PF or DF. Group T showed no significant difference between the injured and uninjured side for tibiofibular measurements in maximal PF and DF, suggesting anatomic reduction. For Group S, however, there was a significantly larger distance for all three measurements at maximal PF compared to the uninjured ankle (all P < 0 .05). In all but one Group S patient, screws were broken or removed prior to their dynamic CT, allowing possible increased syndesmotic motion, similar to Group T. Despite this, dynamic CT analysis detected increased tibiofibular distance in Group S as ankles moved into maximal PF when compared with the uninjured ankle. Given the importance of anatomic syndesmosis reduction, dynamic ankle CT technology may provide valuable physiologic information warranting further investigation


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 184 - 184
1 Apr 2005
Di Lazzaro A Falciglia F Guzzanti V Demaio P
Full Access

In recent years, the use of computed tomography (CT) has made it possible to obtain without distortion images of axial sections of the patella with the knee in the first 15°–20° of flexion.

We performed CT examinations on 27 patients aged between 11 and 17 years. We considered patients who had anterior knee pain with or without a feeling of patellar instability. CT examinations were performed with the knee flexed to 15° with and without quadriceps contraction. The tomograms obtained were analysed considering: (1) the congruence angle (CA), (2) the patellar tilt angle (PTA), (3) the sulcus angle (SA) and (4) trochlear depth (TD). We performed CT examinations on a control group of 20 patients aged between 11 to 17 years. Statistical analysis was performed by using the analysis of variation (ANOVA) test or the Student’s t-test on paired or unpaired data.

The difference between control knees and symptomatic knees was significant for all of the CT variables (unpaired t-test). Malalignment detected with the quadriceps relaxed was typed according to the classification of Schutzer et al. as follows: type I – lateralised patella, 13 knees (24.1%); type II – lateralised and tilted patella, 24 knees (44.4%); and type III – tilted patella, 12 knees (22.2%). In 26 knees (48.2%), CT examination with quadriceps in contraction gave the same findings as CT examination with the quadriceps relaxed, i.e. type and severity of malalignment were identical. In the remaining 28 knees (51.8%), CT examination with the quadriceps in contraction gave different results from the CT examination with the quadriceps relaxed.

The greater sensitivity and specificity of CT as compared with conventional radiographic methods in the diagnosis of patellofemoral malalignment have been demonstrated. Our results show that there is a relationship between clinical findings and CT data. CT assessment with the quadriceps relaxed permitted us to divide the knees into three types of patellofemoral malalignment. To our knowledge, not many studies have been performed with the quadriceps contracted. In the present study, in 48.2% of knees there were no differences between CT assessment with the quadriceps relaxed and with the quadriceps contracted in either type or severity of malalignment. In contrast, in the remaining 51.8% of symptomatic knees we found differences.

Before planning an operation in patients with anterior knee pain with or without patellar instability, CT assessment both with the quadriceps relaxed and contracted permits a reliable documentation of malalignment, permitting the surgeon to select the optimal treatment.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 309 - 309
1 May 2006
Hiranuma Y Atsumi T Yamano K Takemura Y Tamaoki S Asakura Y Kato E Watanabe M
Full Access

Introduction: We evaluated antero-posterior instability of the hip with osteonecrosis immediately after anterior rotational osteotomy using Dynamic CT and investigated the relationship between the instability and the developing marginal osteophyte of the femoral head postoperatively. Materials and Methods Twenty-three hips in 21 patients with non-traumatic osteonecrosis undergoing anterior rotational osteotomy were studied. There were 19 men and 2 women with a mean age of 39 years at operation. All patients were followed up for more than 2 years (mean: 4). The etiologic factors were steroid administration in 10, alcoholic abuse in 12, and both in 1. According to the staging system by the Japanese Ministry of Health, Labor, and Welfare, there were 11 hips in stage 3a (collapse less than 3 mm), 9 in 3b (collapse 3 mm or greater), and 3 in stage 4. Dynamic CT, taken in both neutral and 45 degrees flexion positions, studied the antero-posterior shift of the femoral head. In addition, we analyzed marginal osteophytes with more than 2 mm in size on follow-up A-P radiographs. Results: Seven hips (30%) with 5 hips in stage 3b and 2 hips in stage 4 showed instability. Marginal osteophytes were shown in 8 hips including all of 7 hips with the instability. However, these hips had no joint narrowing. Conclusions: From these results, hip instability immediately after anterior rotational osteotomy occurs in cases with an extensive necrotic lesion and marked collapse preoperatively. Developing marginal osteophytes may prevent the instability


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 37
1 Mar 2002
Hernigou P Tararis G Ma M
Full Access

Purpose: The position of the patella after implantation of a total knee arthroplasty is generally determined by static measurements on the femoropatellar 30° flexion view or on a computed tomography (CT) scan in full extension. We studied the kinetics of the patellar implant between 0° and 90° on dynamic CT scans to determine the influence of torsion of the femoral and tibial components on the patellar course. Material and methods: Twenty patients with titanium total knee arthroplasties implanted in 1991 and 1992 underwent a dynamic CT study preoperatively and during the year following prosthesis implantation. An Imatron machine was used to obtain dynamic slices during knee flexion from 0° to 90°. The patient was installed in the prone position. Slice thickness was 8 mm for images centred on the lower end of the femur. Ten 50 ms images were obtained during flexion from 0° to 90°. The technique used preoperatively and postoperatively enabled study of transversal translation and tilt of the patella. Results: The orientation of the patellar transversal bony axis remained closely parallel to the flexion axis of the knee (i.e. the epicondylar axis) both preoperatively and postoperatively, irrespective of the orientation of the femoral and tibial components. Between 0° and 90° flexion, the prosthetic patella exhibited a translation movement laterally to medially during the first degrees of flexion then medially to laterally during the last degrees of flexion. The transversal displacement of the patellar insert was less pronounced when the femoral component was placed in external rotation from the epicondylar axis. For femoral implants in internal rotation (mean 5°), the translation of the patellar insert was a mean 1.5 mm between extension and flexion. This translation was only a mean 1 cm for implants in external rotation (mean 5°). Contact between the patellar prosthetic component and the femoral prosthetic component were more harmonious when the femoral implant was placed in external rotation. Torsion of the tibial implant did not appear to have an impact on the transversal course of the patella in this series. Discussion, conclusion: Rotation of the femoral component influenced the relationship between the patella and the femoral component in flexion-extension movements. However, torsion of the femoral component had little effect on the position of the patella itself. The patellar remained schematically parallel to the epicondylar axis, maintaining an orientation close to that observed preoperatively. The torsion of the femoral implant is the element that modifies its position under the patella and by consequence the relations between the patella and the femoral trochleae. These modifications are more pronounced when the knee is in extension than when the knee is in 90° flexion, excepting for the lift-off phenomenon observed at 90° flexion which is related to the trapezoidal femorotibial resection spaces


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 545 - 545
1 Oct 2010
Campton L Bucknill A Clifford J Patten S
Full Access

Detailed preoperative planning is essential for open reduction and internal fixation of acetabular fractures if a successful outcome is to be achieved. Decisions such as patient positioning, approach, reduction techniques and implant positioning are greatly influenced by fracture pattern and displacement. These fractures are frequently complex and a thorough understanding of their 3-Dimensional (3D) form is necessary for pre-operative decision making. A combination of biplanar x-rays, 2 Dimensional CT scans (Axial, Sagittal and Coronal multi-plane reformats) and, more recently, 3D CT reconstructions are provided routinely. However, the 3D reconstructions are provided to surgeons as static 2D pictures of the 3D model (up to 6 different views), rather than a true 3D representation. In this study we used dynamic 3D models to provide additional information to surgeons. The 3D models were generated on a standard desktop or laptop computer and can be used in the operating theatre (Osirix Dicom viewing software). These true 3D reconstructions allow the surgeon to manipulate the model himself in real time so that the fracture can be viewed at any angle and overlying fragments removed to expose deeper structures. 3 experienced consultant pelvic trauma surgeons reviewed plain radiographs and 2D Pelvic CT scans from 20 acetabular fractures. They were asked to make a preoperative plan with regard to fracture classification and planned surgical approach(s). At separate, time-spaced, sittings they were provided with a 3D Static and 3D Dynamic CT reconstruction in addition. They were blinded to any previous plan and the patients’ details. A comparison was then made with regard to surgical plan and the time taken to make that plan with or without access to dynamic 3D models. The additional information provided by dynamic 3D modelling was found to reduce planning time and, in some cases, change the surgical plan


Bone & Joint Open
Vol. 3, Issue 3 | Pages 268 - 274
21 Mar 2022
Krishnan H Eldridge JD Clark D Metcalfe AJ Stevens JM Mandalia V

Recognized anatomic variations that lead to patella instability include patella alta and trochlea dysplasia. Lateralization of the extensor mechanism relative to the trochlea is often considered to be a contributing factor; however, controversy remains as to the degree this contributes to instability and how this should be measured. As the tibial tuberosity-trochlear groove (TT-TG) is one of most common imaging measurements to assess lateralization of the extensor mechanism, it is important to understand its strengths and weaknesses. Care needs to be taken while interpreting the TT-TG value as it is affected by many factors. Medializing tibial tubercle osteotomy is sometimes used to correct the TT-TG, but may not truly address the underlying anatomical problem. This review set out to determine whether the TT-TG distance sufficiently summarizes the pathoanatomy, and if this assists with planning of surgery in patellar instability.

Cite this article: Bone Jt Open 2022;3(3):268–274.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 75 - 75
1 May 2012
Bucknill A Yam T Campton L Robertson P de Steiger R
Full Access

FAI has been implicated in the progression of osteoarthritis (OA) and early detection may allow for treatment, which can slow or halt progression. FAI is a difficult condition to image and there is little objective evidence about imaging accuracy. We aim to measure the accuracy of five imaging modalities. Three blinded observers retrospectively reviewed five different modalities from two age and sex matched groups: A patient group referred to the outpatient clinic with a clinical diagnosis of FAI and a control group who had had CT scans of the pelvis for suspected trauma, where the Pelvic scan had been reported as showing no injuries. The imaging modalities were: Standard x-ray; Antero-Posterior, Lateral; Condition-specific x-ray projections; Dunn view, lateral internal rotation; Standard Computer Tomography (CT) multiplanar reconstruction (MPR); axial, sagittal and coronal; Condition-specific CT MPR; angled axial, angled coronal; 3D modelling; and surface rendered dynamic. We found marked variations in the sensitivity, specificity, Positive Predictive Value (PPV) and Negative Predictiive Value (NPV) for each of the following imaging modalities: Standard X-ray; Sensitivity 51.9; Specificity; 57.1; PPV; 40; NPV; 68.3 Special X-rays; Sensitivity; 66.7; Specificity; 57.1; PPV; 46.1; NPV; 75.7. Standard CT MPR; Sensitivity; 40.7; Specificity; 75.5; PPV; 47.8; NPV; 69.8 Special CT MPR; Sensitivity; 48.1; Specificity; 57.1; PPV; 46.4; NPV; 70.8 Dynamic 3D CT models; Sensitivity; 55.6; Specificity; 69.3; PPV; 42.8; and NPV; 71.8. The Dynamic 3D CT models (where the observer can manipulate the model in real time three dimension to control the perspective) proved to be the most accurate, closely followed by the special X-Ray views, which were also the most sensitive. The Standard CT MPRs were the most specific but had a low sensitivity. This is the first study to measure sensitivity, specificity and PPV and NPV for these imaging modalities in FAI. We recommend the use of condition-specific X-Ray views as well as 3D CT Models for optimal imaging accuracy in this condition. Standard X-Ray views and CTs proved less useful


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 104 - 104
1 Mar 2009
Pickering S Whitehouse S Crawford R Donnelly W
Full Access

Introduction/Aims: Early results of a prospective randomised control trial suggested improved position of components implanted during primary hip replacement. The aim of this study is to definitively show the benefit of computer aided navigation in hip arthroplasty with regard to acetabular component position, stem position and leg length. Method: Eighty consecutive patients were prospectively recruited. Patients were quasi-randomised, on an alternating basis, to undergo hip arthroplasty conventionally or with imageless computer navigation. Postoperatively, a CT scan was performed of the pelvis and lower limb. Using a dynamic CT planning software package, the cup and stem position was measured and compared to the position expected by the three operating surgeons in control cases and the position given by the navigation unit in the study group. Change in leg length was measured clinically and compared with the navigation predicted leg length change. Statistical analysis was performed by a statistician. Results: Thirty nine navigated hips (29 female, 10 male) and forty one control hips (26 female, 15 male) were recruited. In the navigated group, the mean age was 65.7 and mean BMI was 29.1. In the control group, the mean age was 64.7 and the mean BMI was 29.4 in the control group. Uncemented, securfit/trident hips were used in 18 navigated cases and 20 control cases, with all other cases being cemented Exeter stems and contemporary cups. None of these differences were significant using the Mann-Whitney test. The mean operating time was 128 minutes for navigated hips and 84 minutes for controls, the difference significant at p< 0.005 using t-test. There was no significant correlation between clinical leg length change, measured in the operating theatre and the leg length change predicted by navigation. Accuracy of cup and stem placement was assessed by comparison of the homogeneity of variances, the Levene statistic, in the navigated and control groups. The range of cup inclination, cup version and stem version was significantly narrowed in the navigation group (p< 0.05). Conclusion: Computer navigation improves the accuracy of component placement in hip arthroplasty with respect to cup version, cup inclination and stem version with either cemented or uncemented hips


Bone & Joint Open
Vol. 2, Issue 11 | Pages 988 - 996
26 Nov 2021
Mohtajeb M Cibere J Mony M Zhang H Sullivan E Hunt MA Wilson DR

Aims

Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement.

Methods

We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 350 - 350
1 Sep 2012
Aksahin E Guzel A Yuksel H Celebi L Erdogan A Aktekin C Bicimoglu A
Full Access

Aim. The purpose of this study was to analyze the patellofemoral kinematics in neglected adult developmental dysplasia of the hip patients with patellofemoral symptoms and tried to clarify the affect of the severity of dislocation, the amount of limb length discrepancy, the deviation of mechanical axis and the changes in femoral anteversion on patellofemoral alignment. Methods. The dynamic patellofemoral CT results of 39 patients with DDH suffering from knee pain were reviewed. The mean age was 40.07 (range: 22–61). 14 of them were bilateral and 25 were unilateral neglected DDH patients. The CT results of 12 patients suffering from unilateral patellofemoral pain following the treatment of locked intramedullary nailing was taken as control group. In this patients atraumatic and asymptomatic normal site was taken as control group. Results. In unilateral neglected DDH patients there was significantly higher medial patellar displacement in 0, 15, 30, 60 degrees flexion in the knee at the site of dislocation. Again in uninvolved site medial patellar displacement in 15, 30, 60 degrees flexion was higher with respect to control group. In the involved extremity the PTA angle in 0, 15, 30, 60 degrees flexion were significantly higher than in control group. This increase in PTA angle corresponding to medial patellar tilt was observed only in involved extremity. In the knees of patients with bilateral DDH there was significant medial patellar displacement in every flexion degrees with respect to control group. Besides in bilateral DDH patients, the PTA angle in 15, 30, 60 degrees flexion were significantly higher than control group corresponding to medial patellar tilt. The amount of leg length discrepancy and the severity of dislocation as well as mechanical axis deviation were not affecting the patellofemoral parameters in both unilateral and bilateral DDH patients. Conclusion. Both in unilateral and bilateral DDH patients there are major changes in patellar tracking on femur during knee flexion. Increased medial shift and medial patellar tilt were seen in these patient groups. The neglected DDH patients suffering from knee pain should be analyzed not only for tibiofemoral abnormalities but also for patellofemoral malignment


Bone & Joint Research
Vol. 2, Issue 12 | Pages 255 - 263
1 Dec 2013
Zhang Y Xu J Wang X Huang J Zhang C Chen L Wang C Ma X

Objective

The objective of this study was to evaluate the rotation and translation of each joint in the hindfoot and compare the load response in healthy feet with that in stage II posterior tibial tendon dysfunction (PTTD) flatfoot by analysing the reconstructive three-dimensional (3D) computed tomography (CT) image data during simulated weight-bearing.

Methods

CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot were taken first in a non-weight-bearing condition, followed by a simulated full-body weight-bearing condition. The images of the hindfoot bones were reconstructed into 3D models. The ‘twice registration’ method in three planes was used to calculate the position of the talus relative to the calcaneus in the talocalcaneal joint, the navicular relative to the talus in talonavicular joint, and the cuboid relative to the calcaneus in the calcaneocuboid joint.


Bone & Joint 360
Vol. 2, Issue 6 | Pages 24 - 26
1 Dec 2013

The December 2013 Spine Roundup360 looks at: Just how common is lumbar spinal stenosis?; How much will they bleed?; C5 palsy associated with stenosis; Atlanto-axial dislocations revisited; 3D predictors of progression in scoliosis; No difference in outcomes by surgical approach for fusion; Cervical balance changes after thoracolumbar surgery; and spinal surgeons first in space.