Abstract
Introduction/Aims: Early results of a prospective randomised control trial suggested improved position of components implanted during primary hip replacement. The aim of this study is to definitively show the benefit of computer aided navigation in hip arthroplasty with regard to acetabular component position, stem position and leg length.
Method: Eighty consecutive patients were prospectively recruited. Patients were quasi-randomised, on an alternating basis, to undergo hip arthroplasty conventionally or with imageless computer navigation. Postoperatively, a CT scan was performed of the pelvis and lower limb. Using a dynamic CT planning software package, the cup and stem position was measured and compared to the position expected by the three operating surgeons in control cases and the position given by the navigation unit in the study group. Change in leg length was measured clinically and compared with the navigation predicted leg length change. Statistical analysis was performed by a statistician.
Results: Thirty nine navigated hips (29 female, 10 male) and forty one control hips (26 female, 15 male) were recruited. In the navigated group, the mean age was 65.7 and mean BMI was 29.1. In the control group, the mean age was 64.7 and the mean BMI was 29.4 in the control group. Uncemented, securfit/trident hips were used in 18 navigated cases and 20 control cases, with all other cases being cemented Exeter stems and contemporary cups. None of these differences were significant using the Mann-Whitney test. The mean operating time was 128 minutes for navigated hips and 84 minutes for controls, the difference significant at p< 0.005 using t-test.
There was no significant correlation between clinical leg length change, measured in the operating theatre and the leg length change predicted by navigation. Accuracy of cup and stem placement was assessed by comparison of the homogeneity of variances, the Levene statistic, in the navigated and control groups. The range of cup inclination, cup version and stem version was significantly narrowed in the navigation group (p< 0.05).
Conclusion: Computer navigation improves the accuracy of component placement in hip arthroplasty with respect to cup version, cup inclination and stem version with either cemented or uncemented hips.
Correspondence should be addressed to Ms Larissa Welti, Scientific Secretary, EFORT Central Office, Technoparkstrasse 1, CH-8005 Zürich, Switzerland