Advertisement for orthosearch.org.uk
Results 1 - 17 of 17
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 157 - 157
1 Jul 2014
Heuberer P Lovric V Russell N Goldberg J Walsh W
Full Access

Summary Statement. Demineralised bone matrix augmented tendon-bone fixations in the animal model show less scar tissue and an enthesis morphology closer to the physiologic one which may lead to a more resistant repair construct. Introduction. Rotator cuff repair is one of the most common operative procedures in the shoulder. Yet despite its prevalence recurrent tear rates of up to 94% have been reported in the literature. High failure rates have been associated with tendon detachment from bone at the tendon – bone interface. Exogenous agents as biological strategies to augment tendon – bone healing in the shoulder represent a new area of focus to improve patient outcomes. Demineralised bone matrix (DBM) contains matrix bound proteins, exposed through acid demineralization step of DBM manufacture, and has long been recognised for its osteoinductive and osteoconductive properties. We hypothesised that DBM administered to the bone bed prior to the reattachment of the tendon, will upregulate healing and result in enhanced tissue morphology that more closely resembles that of a normal enthesis. An established ovine transosseous equivalent rotator cuff model was used. Methods. Following ethics approval, 10 adult wethers (18 months) were randomly allocated to control, n=4 (without DBM) or DBM, n=6 (DBM administered to bone bed) groups. The infraspinatus tendon was detached from its insertion and repaired in a transosseous equivalent fashion using PEEK suture anchors. In treatment animals 0.25cc of ovine DBM, previously prepared using a modified Urist protocol, was injected into two drill holes within the bony tendon footprint. Animals were culled at 4 weeks following surgery and processed for tissue histology and microcomputed tomography (μCT) endpoints. Results. No infection or tendon detachment following repair was noted in either group. 3D reconstructed images of μCT scans verified correct DBM and suture anchor placement. Histological images demonstrated distinct differences in tissue morphology between the two groups; however there was no evidence of the four – zoned structure characteristic of a healthy tendon bone insertion, in any specimens. In the control group specimens, the tendon midsubstance was highly disorganised with randomly arranged collagen fibres and diminutive areas of fibrocartilage. In the treatment group, large regions between tendon and bone were occupied by fibrocartilage. Within the fibrocartilage region, insertional collagen fibres appeared organised and chondrocytes were orientated in the direction of the insertional collagen fibres. Organised collagen fibre orientation within the tendon midsubstance was observed, though this was not consistent throughout all the specimens. DBM particles were resorbed and trabecular bone occupied the DBM holes. The PEEK anchors were all in direct contact with the ongrowing bone indicating good quality integration and fixation. Discussion. This study showed that DBM augmented tendon to bone repair leads to an upregulated cellular activity resulting in increased amounts of fibrocartilage between the repaired tendon and underlying bone. The upshot of this is an improved tissue organization which more closely resembles the morphology of the normal enthesis. Introduction of osteoinductive DBM at the tendon – bone interface during surgery may reduce failure rates associated with rotator cuff repair and improve clinical outcomes


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_12 | Pages 18 - 18
1 Mar 2013
Griffin X Chaudhry M Parsons N McArthur J Costa M
Full Access

Autologous bone graft has been used in the treatment of complex bone defects for more than a century. Morbidity associated with the harvest of this bone graft has led orthopaedic surgeons to seek alternative therapies in the treatment of long bone non-unions. The aim of this study was to determine whether the use of demineralised bone matrix as a bone healing adjunct improves clinical outcomes in adult patients with long bone non-union. A systematic search was carried out of the peer-reviewed English language literature to identify all relevant studies. The search strategy returned a total of 47 studies. Five of these studies were relevant to the research question. The studies were critically assessed and where appropriate combined in a meta-analysis. 4 non-comparative studies and one comparative study were reviewed. An overall estimate of the rate of union for the five studies was 86% (95%CI: 71–94%). The one comparative study demonstrated the relative risk (RR) of healing was not significantly better than in patients treated with autologous bone graft; RR=1.03 (95%CI 0.96–1.12). There are limited data to support the use of demineralised bone matrix in the treatment of long bone non-union. Demineralised bone matrix is likely to be similarly effective to other treatments in the management of non-union. This study confirms the clinical and ethical requirements to proceed with a randomised controlled trial to test the effectiveness of this intervention


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 481 - 481
1 Sep 2009
Gangone R Lakkireddi P Kotrba M Marsh G
Full Access

Background: A common problem achieving lumbar spinal fusion is developing a pseudarthrosis. The current gold standard in achieving fusion is the use of autograft from pelvis or posterior elements of the spine. However the potential limitations of insufficient quantity and donor site morbidity have led to the use of bone graft alternatives such as DBM which contains osteoinductive BMPs. Aims & Methods: A prospective randomized control trial comparing the effectiveness of Demineralised Bone Matrix (DBM Putty)/autograft composite with autograft in lumbar postero-lateral or 270 degree spinal fusion. 35 patients were required for the study. They were randomized to have DBM and autograft on one side of the posterior approach and autograft alone on other side of the same approach. Patients were followed up with interval radiographs for total of 24mons. To date 32 patients have been recruited and with an average follow up a15.3 months. The mineralization of fusion mass lateral to the instrumentation on each side was graded as Absent, Mild (< 50%), Moderate (> 50%) or Complete fusion (100%). The assessment was made by independent orthopaedic consultant and a musculoskeletal radiologist who were blinded to graft assignment. Results: The sex distribution was 17:15 male to females with a mean age of 55.2 (21–87years) and an average follow up of 15.3mons (3–24mons). 50% of patients had single level fusion and the remainder had more than one level fusion. At 12months, on the side of DBM 28% had complete fusion, 65% had moderate fusion, and 7% had no fusion mass. During the same period on the other side (non DBM side) approx 25% did not show any sign of fusion. There was no correlation with number of levels, age or sex. Conclusions: Osteoinductive properties of DBM would appear to enhance the consolidation of the lumbar spinal fusion. DBM reduces the amount of harvested autograft graft and also minimises the morbidity of donor site complications


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 262 - 262
1 May 2009
Sundar S Pendegrass CJ Blunn GW
Full Access

Research in to tendon-bone healing techniques focus on increasing bone growth at the interface such as cell or growth factor (e.g. BMP-2) augmentation. Demineralised bone matrix (DBM) is osseoinductive and is in use clinically. Hypothesis: DBM augmentation of a healing tendon-bone interface will result in improved function at 3, 6, 9 and 12 weeks, and a morphology that more closely resembles that of a normal enthesis at 12 weeks. Materials and methods: An ovine patellar tendon model was used. 19 skeletally mature ewes were allocated to the control group or DBM group. In both groups the patellar tendon was detached, and following tibial tubercle osteotomy, was re-attached using 3 suture anchors. In the DBM group a piece of DBM was placed between the tendon and bone. 2 animals were sacrificed at 6 weeks and 6 animals at 12 weeks. Animals underwent force plate analysis at 3, 6, 9 and 12 weeks. The tendon-bone interface length which was fibrous or fibrocartilaginous, and the area of fibrocartilage, mineralised fibrocartilage and new bone was quantified. Results: 3 control group animals (33%) failed within 6 weeks. None failed in the DBM group. The DBM group was significantly better than the control at all time points (p< 0.05). DBM produced a significantly more fibrocartilaginous enthesis than the control group (p< 0.05). Controls were significantly more fibrous than the DBM group (p< 0.05). DBM produced significantly more fibrocartilage (p< 0.05), and mineralised fibrocartilage (p< 0.05). Discussion: 33% of the control group failed within 6 weeks, whilst no failures were observed in the DBM group. DBM animals mobilised earlier and had significantly better function at all time points. Histologically, the DBM group showed a more mature direct type enthesis at earlier time points. Conclusion: DBM augmentation of a healing tendon-bone interface enhances functional and morphological recovery at earlier time points


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 42 - 42
1 Apr 2017
Thangarajah T Pendegrass C Shahbazi S Lambert S Alexander S Blunn G
Full Access

Background

Re-attachment of tendon to bone is challenging with surgical repair failing in up to 90% of cases. Poor biological healing is common and characterised by the formation of weak scar tissue. Previous work has demonstrated that decellularised allogenic demineralised bone matrix (DBM) regenerates a physiologic enthesis. Xenografts offer a more cost-effective option but concerns over their immunogenicity have been raised. We hypothesised that augmentation of a healing tendon-bone interface with DBM incorporated with autologous mesenchymal stem cells (MSCs) would result in improved function, and restoration of the native enthesis, with no difference between xenogenic and allogenic scaffolds.

Methods

Using an ovine model of tendon-bone retraction the patellar tendon was detached and a complete distal tendon defect measuring 1 cm was created. Suture anchors were used to reattach the shortened tendon and xenogenic DBM + MSCs (n=5) and allogenic DBM + MSCs (n=5) were used to bridge the defect. Functional recovery was assessed every 3 weeks and DBM incorporation into the tendon and its effect on enthesis regeneration was measured using histomorphometry.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 82 - 82
1 Jan 2017
Dozza B Lesci I Della Bella E Martini L Fini M Lucarelli E Donati D
Full Access

Demineralized bone matrix (DBM) is a natural, collagen-based, well-established osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM osteoinductivity.

Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1–2 mm), medium (M, 0.5–1 mm), and small (S, < 0.5 mm). After demineralization, the three DBM samples were characterized by DTA analysis, XRD, ICP-OES, and FTIR. Data clearly showed a particle size-dependent alteration in collagen structure, with DBM-M being altered but not as much as DBM-S. The in vivo study showed that only DBM-M was able to induce new bone formation in a subcutaneous ectopic mouse model. When sheep MSC were seeded onto DBM particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. Gene expression analysis performed on recovered implants supports the histological results and underlines the supportive role of MSC in DBM osteoinduction through the regulation of host cells. In conclusion, our results show a relation between DBM particle size, structural modification of the collagen and in vivo osteoinductivity. The medium particles represent a good compromise between no modification (largest particles) and excessive modification (smallest particles) of collagen structure, yielding highest osteoinduction. We believe that these results can guide researchers to use DBM particles of 0.5–1 mm size range in applications aimed at inducing new bone formation, obtaining results more comparable and reliable among different research groups. Furthermore, we suggest to carefully analyze the structure of the collagen when a collagen-based biomaterial is used alone or in association with cells to induce new bone formation.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 63 - 63
1 Sep 2012
Wong M Yu Y Yang J Walsh W
Full Access

The purpose of this study was to understand the effects of terminal sterilisation and residual calcium on human demineralised bone matrix (DBM) in ectopic bone formation in nude rat.

The intramuscular implantation of human DBM prepared by the Queensland Bone Bank (QBB) from four donors into eight male athymic rats was used to assess osteoinductivity. The DBM contained different levels of residual calcium and treated with or without gamma-irradiation at 11kGy. At 6 weeks post-implantation, calcium deposition was assessed by manual palpitation and radiological imaging. Tissue morphology and cellular interactions was analysed using various histological staining methods whilst protein expression of anabolic and catabolic biomarkers were examined through immunohistochemistry. All results were then analysed in qualitative, semi-quantitative and quantitative manners and tested for statistical significance.

Bone formation was observed in all specimens at the gross level. This was confirmed by histology which revealed bony capsules surrounded by soft tissue in the muscle pockets and differences in tissue components. On a cellular level, variations in osteoclast expression were found between the two groups as well as amongst individual donors through statistical analysis which resulted in an imbalance of the expression of anabolic and catabolic markers. Furthermore, a positive relationship between residual calcium and new bone formation in gamma irradiated DBM samples was found. To date, no studies have compared the effect of calcium in gamma irradiated DBM.

Our results suggest that gamma irradiation even at low doses and residual calcium may affect new bone formation. Taken together, this study stresses the importance of selecting ideal conditions for graft processing and the need to identify an optimal level of irradiation and remaining calcium levels that confers a balance between osteoinductivity and sterility.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 208 - 208
1 Apr 2005
Arnander DM Karmani MS Marsh MG
Full Access

The purpose of the study and background. Advances in biotechnology have led to the development of demineralised bone matrix (DBM). This is a soup of cellular molecules extracted from cadaveric bone material, from which the minerals of the donor bone have been removed. The resulting material is described as having both osteoinductive and osteoconductive properties. Clinically this material is attractive as it could provide a framework to allow fusion between suitably prepared bones, thereby potentially avoiding the morbidity associated with autologous bone grafts.

There is published evidence of the efficacy of DBM in animal spine models, but at present there is scanty evaluation of its use in the human spine in routine clinical practice.

The purpose of our pilot study has been to observe the radiological evidence of fusion rates in lumbar spine transverse process fusions, using DBM.

Methods A retrospective pilot study of 21 patients who underwent posterolateral lumbar spinal fusions using DBM. AP L spine radiographs were graded according to degree of fusion mass seen.

Results We analysed radiographs from a range of 13 – 28 weeks post op (average 4.5 months post op), and found that 50% of our study population did not have any radiological evidence of fusion mass, 45% had scanty evidence of fusion mass and only 5% had clear fusion mass.

Conclusion These early results suggest that the use of expensive DBM may not be cost effective, as we would have expected more radiological evidence of fusion mass forming.

This findings of this study have led us to design a randomised prospective study which will compare using stringent experimental design the use of DBM with using the more traditional autologous graft.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 13 - 14
1 Mar 2008
Di Silvio L Ali Z Narvani A Goodship A Bentley G Tsiridis E
Full Access

Current bone grafts include allograft and autografts, both of which have limitations. Tissue engineering biotechnology has shown considerable promise in improving grafts. A competent graft material should ideally have osteoconductive and osteoinductive properties and comprise of bone forming cells and osteoinductive growth factors. In this study, we have evaluated the in vitro formation of bone and have used human demineralised bone matrix [DBM] and human insoluble collagenous matric [ICM] as scaffolds for mesenchymal stem cells [MSCs] and osteogenic protein [OP-1]. The objective was to determine whether combined addition of OP-1 and MSCs resulted in a superior bone graft substitute by improving the inherent osteoinductive property.

DBM and ICM were prepared and combined with rhOP [1.4 mg/0.25 mg of bone] and MSCs [1 x 105/ ml]. Statistically significant differences in MSC proliferation were seen between materials with and without OP-1 [P< 0.05}, n=8] in DBM on day 1, and both DBM and ICM on day 7 and 14. Enhanced osteogenic differentiation was observed in the presence of OP-1 when compared to DBM alone and on DBM and ICM with OP-1. In conclusion MSCs and OP-1 can be seeded together on DBM and ICM and Von Kossa staining and X-ray analysis confirmed in vitro de novo bone formation, with DBM + MSCs + OP-1 being more successful in this regard.

Conclusion: To date, no other study, to the author’s knowledge, has used MSCs and OP-1 together on a graft material; this funding, therefore, has very important clinical implications.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 351 - 351
1 Mar 2004
Di Silvio L Ali Z Goodship A Tsiridis E
Full Access

Aim:. The objective of this study was to improve the osseoinductive capacity of human demineralised bone matrix (DBM) and human insoluble collagenous matrix (ICM), following incorporation of recombinant human osteogenic protein 1 (rhOP-1) and human mesenchymal stem cells (MSCs). Ethical Committee approval has been obtained by our Institution. Methods: Recombinant human osteogenic protein Ð 1 (400ng/0.25g of bone) was seeded onto DBM and ICM together with human MSCs (1 x 105). Cellular proliferation was quantitatively evaluated in vitrousing Alamar Blue and 3H-TdR assays. Quantitative cellular differentiation was assessed using the alkaline phosphatase assay. Von Kossa staining, X-ray analysis, and PCR were used for qualitative evaluation of cellular differentiation. Qualitative analysis of proliferation and differentiation was assessed using scanning electron microscopy (SEM). Results: MSC proliferation and differentiation down the osteogenic lineage was observed on DBM and ICM in the presence of OP-1, and also on DBM alone. Alamar blue and 3H-TdR assays conþrmed that MSC proliferation occurred on both DBM and ICM, with the values being signiþcantly greater with addition of OP-1. The ALP activity showed that MSCs differentiated into osteo-blasts on DBM alone, and on DBM and ICM with OP-1. In all cases, OP-1 had a signiþcant effect on MSCs. Discussion: DBM and ICM when seeded with MSCs and OP-1 provide an improved osteoconductive and osteoinductive graft material resulting in de novo-bone formation.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 423 - 432
1 Jul 2017
van der Stok J Hartholt KA Schoenmakers DAL Arts JJC

Objectives

The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery.

Methods

A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 116 - 116
1 Apr 2012
Pickard R Sharma A Reynolds J Nnadi C Lavy C Bowden G Wilson-MacDonald J Fairbank J
Full Access

A literature review of bone graft substitutes for spinal fusion was undertaken from peer reviewed journals to form a basis for guidelines on their clinical use. A PubMed search of peer reviewed journals between Jan 1960 and Dec 2009 for clinical trials of bone graft substitutes in spinal fusion was performed. Emphasis was placed on RCTs. Small and duplicated RCTs were excluded. If no RCTs were available the next best clinical evidence was assessed. Data were extracted for fusion rates and complications. Of 929 potential spinal fusion studies, 7 RCTs met the inclusion criteria for BMP-2, 3 for BMP-7, 2 for Tricalcium Phosphate and 1 for Tricalcium Phosphate/Hydroxyapatite (TCP/HA). No clinical RCTs were found for Demineralised Bone Matrix (DBM), Calcium Sulphate or Calcium Silicate. There is strong evidence that BMP-2 with TCP/HA achieves similar or higher spinal fusion rates than autograft alone. BMP-7 achieved similar results to autograft. 3 RCTs support the use of TCP or TCP/HA and autograft as a graft extender with similar results to autograft alone. The best clinical evidence to support the use of DBMs are case control studies. The osteoinductive potential of DBM appears to be very low however. There are no clinical studies to support the use of Calcium Silicate. The current literature supports the use of BMP-2 with HA/TCP as a graft substitute. TCP or HA/TCP with Autograft is supported as a graft extender. There is not enough clinical evidence to support other bone graft substitutes. This study did not require ethics approval and no financial support was received


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 171 - 171
1 Jan 2013
Elnikety S Pendegrass C Blunn G
Full Access

Introduction. Demineralised Bone Matrix (DBM) is widely used in Orthopaedics and dentistry as a bone graft substitute and may be used to augment bone formation in load bearing applications. In this study we examine the effect of gamma irradiation and freeze drying on the tensile strength of Demineralised Cortical Bone (DCB). Methods. Tibias were harvested from mature ewes and cut into bony strips. Demineralisation was done using 0.6M HCL and confirmed by X-ray. Specimens were washed until a pH of 7.0 +/_ 0.2 was achieved in the washing solutions. Specimens were allocated into 4 groups; group (A) non freeze dried non gamma irradiated, group (B) freeze dried non gamma irradiated, group (C) non freeze dried gamma irradiated mention the level of gamma irradiation and group (D) freeze dried and gamma irradiated. The maximum tensile force and stress were measured. Statistical analysis using the Mann-Whitney U test was carried out. Results. The Median of maximum tensile force for group (A) was 218N, group (B) was 306N, group (C) was 263N and for group (D) was 676N. Group (D) results were statistically higher (p=< 0.05) compared to group (A) and (C), while there was no statistical significance compared to group (B). Conclusion. Previously published studies suggested the possibility of using DCB as ACL graft substitute. We examined the effect of gamma radiation as the most common sterilisation technique in medical field and the freeze drying as a possible technique for long term storage on the tensile strength of the DCB. Freeze drying significantly increases the tensile strength of the DCB while gamma irradiation has no significant effect. Our results indicate that freeze dried gamma irradiated DCB can be used as a ligament substitute


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 24 - 24
1 Mar 2012
Dahabreh Z Howard M Campbell P Giannoudis P
Full Access

Aim. To compare a variety of commercially available bone graft substitutes (BGS) in terms of promoting adherence, proliferation and differentiation of osteoprogenitor cells. Materials and methods. A fixed number of porcine mononuclear cells obtained from cancellous bone of the proximal femur was mixed with a standard volume of BGS and then cultured for one week in media followed by two weeks in osteogenic media. BGS included commercially available β-Tricalcium Phosphate (□-TCP), highly porous β-TCP, Hydroxyapatite/Tricalcium phosphate composite, calcium sulphate (CS), Hydroxyapatite (HA), Demineralised bone matrix (DBM), polygraft, and polymers (PGA, PLGA). Staining for live/dead cells as well as scanning electron microscopy (SEM) were carried out on all samples to determine viability and cellular binding. Further outcome measures included alkaline phosphatase assays with normalisation for DNA content to quantify osteogenic potential. Negative (BGS without cells) and positive (culture expanded osteoprogenitors) control experiments were carried out in parallel to validate the results. Results. Live/dead and SEM imaging showed higher cellular viability and attachment with β-TCP than with other BGS. In the experimental setup the average alkaline phosphatase activity in nmol/ml (normalised value for DNA content in nmol/μg DNA) per sample was 657.58 (132.03) for β-TCP, 36.22 (unable to normalise) for calcium sulphate, 19.93 (11.39) for the HA/ TCP composite, 14.79 (18.53) for polygraft, 13.98 (8.15) for the highly porous β-TCP, 5.56 (10.0) for PLGA, 3.82 (3.8) and for HA. It was not possible to analyse data for either DBM or PGA. Conclusion. Under theses experimental conditions, β-TCP has apparent favourable characteristics in terms of maintaining viability of osteoprogenitor cells and allowing proliferation and differentiation. Further work will be carried out to characterise the effect that BGS have on osteoprogenitor cells


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 363 - 363
1 Jul 2008
Racey S Tremoleda J Wojtacha D Khan N McWhir J Simpson A Noble B
Full Access

We have used human Embryonic Stem cells (hESC) and human Mesenchymal Stem Cells (hMSC) in rat models of bone repair in order to assess the efficacy of these cells for treatments of trauma and skeletal diseases. Graft survival is considered to be of key importance to efficacy of these treatments. Therefore the aim of this study was to develop a technique for identifying implanted cells in histological preparations without the need for genetic engineering of the implanted cells. Methods: In our experiments hES and hMSC were pre-differentiated during cell culture towards the osteoblast lineage, and then implanted in a Demineralised Bone Matrix (DBM) carrier into an experimentally created full thickness calvarial bone lesion. The animals were sampled seven days and fourteen days after implantation into either immune deficient (RNU-Foxn1rnu) or immune competent (wild type) Sprague Dawley rats. Fluorescent In Situ Hybridisation (FISH) using whole human genome probes identified the human cells within the host lesion site. Results: Our results have demonstrated that hESC and hMSC derived cells survive in both immune competent (wild type) and immune compromised (nude) animals for the initial seven days post implantation. On the other hand while both the hESC and hMSC derived cells are capable of surviving for at least 14 days in immune compromised animals they do not survive for this period of time in immune competent animals. Discussion: It appears that the cell/DBM graft is not rejected within seven days even when exposed to the wild type hosts T cell response. However longer term survival required an immune deficient model that is lacking in a T cell response. This data points to interesting future studies regarding which components of the host response are responsible for xenogenic stem cell implant rejection


Bone & Joint Research
Vol. 5, Issue 4 | Pages 145 - 152
1 Apr 2016
Bodalia PN Balaji V Kaila R Wilson L

Objectives

We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis.

Methods

The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion.


Bone & Joint 360
Vol. 3, Issue 6 | Pages 31 - 34
1 Dec 2014

The December 2014 Research Roundup360 looks at: demineralised bone matrix not as good as we thought?; trunk control following ACL reconstruction; subclinical thyroid dysfunction: not quite subclinical?; establishing musculoskeletal function in mucopolysaccharidosis; starting out: a first year in consultant practice under the spotlight; stroke and elective surgery; sepsis and clots; hip geometry and arthritis incidence; and theatre discipline and infection.