Abstract
Current bone grafts include allograft and autografts, both of which have limitations. Tissue engineering biotechnology has shown considerable promise in improving grafts. A competent graft material should ideally have osteoconductive and osteoinductive properties and comprise of bone forming cells and osteoinductive growth factors. In this study, we have evaluated the in vitro formation of bone and have used human demineralised bone matrix [DBM] and human insoluble collagenous matric [ICM] as scaffolds for mesenchymal stem cells [MSCs] and osteogenic protein [OP-1]. The objective was to determine whether combined addition of OP-1 and MSCs resulted in a superior bone graft substitute by improving the inherent osteoinductive property.
DBM and ICM were prepared and combined with rhOP [1.4 mg/0.25 mg of bone] and MSCs [1 x 105/ ml]. Statistically significant differences in MSC proliferation were seen between materials with and without OP-1 [P< 0.05}, n=8] in DBM on day 1, and both DBM and ICM on day 7 and 14. Enhanced osteogenic differentiation was observed in the presence of OP-1 when compared to DBM alone and on DBM and ICM with OP-1. In conclusion MSCs and OP-1 can be seeded together on DBM and ICM and Von Kossa staining and X-ray analysis confirmed in vitro de novo bone formation, with DBM + MSCs + OP-1 being more successful in this regard.
Conclusion: To date, no other study, to the author’s knowledge, has used MSCs and OP-1 together on a graft material; this funding, therefore, has very important clinical implications.
The abstracts were prepared by Mr Tim Briggs. (Editoral Secretary 2003/4) Correspondence should be addressed to him at Lane Farm, Chapel Lane, Totternhoe, Dunstable, Bedfordshire LU6 2BZ, United Kingdom