Fretting corrosion of taper junctions is long known and of great concern, because of metal ion and particle release and their related adverse local and systemic effects on the human body (1–3). Orthopedic taper junctions are often comprised of CoCr29Mo6/TiAl6V4 pairings. Beside others the imprinting of the TiAlV-machining marks into the CoCrMo-taper is of clinical interest (4, 5). Thus, the multifactorial details and their interdependencies on the macro-, micro, and nanoscale are still a matter of research (6). This contribution presents the mechanisms of imprinting found in an in-vitro fretting corrosion test. The worn surfaces, the lubricant as well as its remains were analyzed after test and the findings brought into relation to the characteristic wear sub-mechanisms. The fretting tests were conducted by means of a cylinder-on-pin set-up. All details about the test and the sequence of analyses can be found in (7, 8). A marked tribofilm of C-rich organic matter and oxidized wear particles of both bodies was generated at the TiAlV/
In the majority of cases, failure of conventional metal-on-ultra-high molecular weight polyethylene (UHMWPE) artificial joints is due to wear particle induced osteolysis. Therefore, new materials have been introduced in an attempt to produce bearing surfaces that create lower, more biologically compatible wear. Polyetheretherketone (PEEK-OPTIMA) has been successfully used in a number of implant applications due to its combination of mechanical strength and biocompatibility. Multi-directional pin-on-plate wear tests were performed on carbon fibre reinforced PEEK-OPTIMA (CFR-PEEK) against
Introduction. Total hip replacement failure due to fretting-corrosion remains a clinical concern. We recently described that damage within
The generation of particle debris from ultra high molecular weight polyethylene (UHMWPE) against metal hip joints has been shown to cause osteolysis leading to joint loosening in the medium term. This is known as late aseptic loosening since infection is absent. 1. . In an attempt to reduce the volume of wear debris, attention has moved to metal-on-metal prostheses as the total volume of wear debris is less. However, the size, shape and number of the particles are important as well as the total volume as these affect the biological response of the body leading to aseptic loosening. The Durham Mk I Hip Joint Simulator was used to generate
With its high wear and corrosion resistance,
Summary. Metal Injection Molding could provide cost saving of about 20–50% for implantable medical device manufacturing and hence healthcare public spending. Corrosion behaviour and biocompatibility of the new manufactured alloy were studied and showed similar behaviour compared to the traditional one. Introduction. The growing trend for total joint arthroplasties could raise healthcare costs in the near future. Metal Injection Molding (MIM) is a near net shape manufacturing technology and allows the production of finite prosthesis components saving the machining step, and so resources, up to 20–50%. In order to apply such process to the production of actual devices, the bulk material have to show biocompatibility and corrosion behaviour similar to the traditional one. (ASTM F2083, ISO 21536) The aim of this work was to compare cast and forged
Metallic contacts in hip replacements are susceptible to wear and corrosion processes which lead to the release of particles and metal ions. Adverse local tissue reactions (ALTRs) and systemic manifestations to solid and soluble debris can be debilitating for the patients. It is believed that particles originating from
Recently, our lab has made observations of metal damage patterns from retrieval studies that appeared to be cellular in nature [1]. This type of damage presented on about 74% of the retrieved implants and was attributed to inflammatory cells (termed ICI corrosion) [1]. An alternate hypothesis arose surrounding the use of electrosurgery in total joint arthroplasty (TJA). In TJA, where surgery occurs around metallic devices, the interactions of the high voltage, high frequency current created by an electrosurgical generator and the implant need to be better understood. In order to explore the effects electrosurgical currents have on metal implants, the interaction of a model system of highly polished metal disks and a standard electrosurgical generator (ConMed, Utica, NY) was evaluated in various modes and power settings. The disks were made of
In total hip arthroplasty (THA), aseptic loosening induced by polyethylene (PE) wear debris is the most important cause that limits the longevity of implants. Abrasive wear generated through the mechanism such that micrometer-roughened regions and small asperities on the metallic femoral heads surface locally plow through the PE cup surface. Abrasive wear results in the PE material being removed from the track traced by the asperity during the motion of the metallic femoral heads surface. For the purpose of reducing wear, alumina ceramics was introduced in Europe and Japan in 1970s. The clinical results of ceramic-on-PE bearings regarding the wear resistance have been superior to that of the metal-on-PE bearings. Compared with Co–Cr–Mo alloys, alumina ceramics is advantageous for precision machining because of its higher hardness, enable to form spherical and smooth surface. The fracture resistance of the alumina ceramics itself is related to grain size; the grain size reduction leads to the improvement of its resistance. In this study, we evaluated the roundness and the roughness of retrieved two distinct alumina ceramics having different grain size, and Co–Cr–Mo alloy heads. Fourteen retrieved alumina ceramic femoral heads; ten heads with a diameter of 28 mm made of small grain size alumina (SG-alumina; mean grain size is 3.4 μm) with clinical use for 16–28 years and four heads with a diameter of 26 mm made of extra-small grain size alumina (XSG-alumina; mean grain size is 1.3 μm) with clinical use for 14–19 years, were examined. Six retrieved Co–Cr–Mo alloy femoral heads with a diameter of from 22 to 32 mm with average clinical use for 12–28 years were examined. SG-alumina and XSG-alumina heads showed significantly lower roundness compared with Co–Cr–Mo alloy heads, due to higher precision machining [Fig. 1]. The surface roughness for the contact area of the heads increased in order of XSG-alumina, SG-alumina and Co–Cr–Mo alloy. The surface roughness of the non-contact area for all kinds of heads was lower than that for the contact area [Fig. 2]. Surface profiles of the SG-alumina and XSG-alumina showed the reentrant surface while Co–Cr–Mo alloy heads showed the protrusion surface. The roundness and roughness of the Co–Cr–Mo alloy or ceramic surface and the presence or absence of hard third-body particles correlate to the amount of abrasive PE wear. When the third-body was entrapped during the clinical use, a reentrant surface might be formed on the ceramic while protrusion surface formed on the Co–Cr–Mo alloy. The differences in clinical results may be due in part to the influence of third-body particles. The ceramic becomes more resistant than Co–Cr–Mo alloy against the scratching by the entrapped abrasive contaminants because of its harder surface. From the good clinical results of more than 20 years using SG-alumina, the greater long term clinical results using XSG-alumina will be expected.
The effect of an advanced porous surface morphology on the mechanical performance of an uncemented femoral knee prosthesis was investigated. Eighteen implants were inserted and then pushed-off from nine paired femurs (Left legs: advanced surface coating; right legs: Porocoat® surface coating as baseline). Bone mineral density (BMD) and anteroposterior dimension were measured, which both were not significantly different between groups. The insertion force was not significantly different, but push-off force was significantly higher in the advanced surface coating group (P = 0.007). BMD had direct relationship with the insertion force and push-off force (p < 0.001). The effect of surface morphology on implant alignment was very small. We suggest that the surface properties create a higher frictional resistance thereby providing a better inherent stability of implants featuring the advanced surface coating.
Total knee arthroplasty is one of the most common surgeries. About 92% of all implanted knee endorposthesis in 2020 were manufactured from uncoated
Abstract. Aims. Ceramic coatings in total knee arthroplasty have been introduced with the aim of reducing wear and consequently improving implant survivorship. We studied both cobalt-chrome-molybdenum and ceramic-coated components of the same implant design from a single centre to identify if the ceramic coating conferred any benefit at mid-term review. Patients and Methods. We identified 1641 Columbus TKAs (Aesculap AG, Tüttlingen, Germany) from a prospectively collected arthroplasty database. 983 were traditional
The implantation of endoprosthesis is a routine procedure in orthopaedics. Endoprosthesis are mainly manufactured from ceramics, polymers, metals or metal alloys. To ensure longevity of the implants they should be as biocompatible as possible and ideally have antibacterial properties, to avoid periprosthetic joint infections (PJI). Various antibacterial implant materials have been proposed, but have so far only been used sporadically in patients. PJI is one of the main risk factors for revision surgeries. The aim of the study was to identify novel implant coatings that both exhibit antibacterial properties whilst having optimal biocompatibility. Six different novel implant coatings and surface modifications (EBM TiAl6V4, strontium, TiCuN, TiNbN, gentamicin phosphate (GP), gentamicin phosphate+cationic polymer (GP+CP)) were compared to standard CoCrMo-alloy. The coatings were further characterized with regard to the surface roughness. E. coli and S. capitis were cultured on the modified surfaces to investigate the antibacterial properties. To quantify bacterial proliferation the optical density (OD) was measured and viability was determined using colony forming units (CFU). Murine bone marrow derived macrophages (BMMs) were cultured on the surfaces and differentiated into osteoblasts to quantify the mineralisation using the alizarin red assay. All novel coatings showed reduced bacterial proliferation and viability compared to standard CoCrMo-alloy. A significant reduction was observed for GP and GP+CP coated samples compared to
Little is known about the relationship between head-neck corrosion and its effect on the periprosthetic tissues and distant organs of patients hosting well-functioning devices. The purpose of this study was to investigate in postmortem retrieved specimens the degree and type of taper damage, and the corresponding histologic responses in periprosthetic tissues and distant organs. Fifty postmortem THRs (34 primaries, 16 revisions) retrieved after 0.5 to 26 years were analyzed. Forty-three implants had a
Introduction. Little is known about the relationship between head-neck corrosion and its effect on periprosthetic tissues and distant organs in the majority of patients hosting apparently well-functioning devices. We studied the degree and type of taper damage and the histopathologic response in periprosthetic tissue and distant organs. Methods. A total of 50 contemporary THRs (34 primary, 16 revision) retrieved postmortem from 40 patients after 0.4–26 years were studied. Forty-three femoral stems were
Introduction. There is interest in minimally invasive solutions that reduce osteoarthritic symptoms and restore joint mobility in the early stages of cartilage degeneration or damage. The aim of the present study was to evaluate the Biolox®delta alumina-zirconia composite as a counterface for articulation against live cartilage in comparison to the clinically relevant
Total hip arthroplasties are known to corrode predominantly at the taper junctions between Cobalt Chromium Molybedenum (CoCrMo) and Titanium (Ti) alloy components. We aimed to understand the modes underlying clinically significant tissue reactions to metals from corroded implants by determining: (1) what type of metal is present in the tissues, (2) which cells contain the metal species and (3) how this compares with results from metal-on-metal (MOM) hip resurfacings (HRs). This study involved periprosthetic tissue from patients that had undergone revision surgery due to adverse reactions to metal debris (ARMD) from dual-taper prostheses consisting of Ti-based alloy stems paired with
Dual mobility (DM) is an established bearing option in Total Hip Arthroplasty (THA). The traditional mono-block DM designs have limited ability for additional fixation, whereas the modular DM designs allow additional screw fixation but limit internal diameter and have the potential to generate metal debris. We report the early results of a
Introduction: In an attempt to prolong the lives of implantable devices, several ‘new’ materials are undergoing examination to determine their suitability as joint couplings. As part of a series of tests, polyetherether-ketone (PEEK) against cobalt chrome molybdenum (CoCrMo) and carbon fibre reinforced-PEEK against
Design and materials selection and optimisation are the-factors affecting the performance of the modern TKR. In this study new surface treatments were performed and investigated on