To analyse the efficacy and safety of
Osteoarthritis (OA) is a major global disease with increasing prevalence. It is one of the most significant causes of disability worldwide and represents a major burden in terms of healthcare delivery and impact on the quality of life of patients. It is a cause of severe chronic pain and has given rise to alarming levels of opioid use and addiction. Despite this prevalence, there are no disease-modifying treatments which delay or reverse the degrative changes within joints which are characteristics of the disease. All treatments are symptom-modifying with the exception of joint arthroplasty, which is currently the most common surgical procedure carried out in US hospitals. Several pharmaceutical and biological interventions have been tested in recent years, including metalloproteinase inhibitors, chondrogenic agents such as Kartogenin, IL-1 antagonists and monoclonal antibodies. So far, none of these has provided an effective disease-modifying treatment.
Disease modifying approaches are commonly applied in OA patients. An aging society with better life expectancies is increasing in Europe and the globe. Orthobiologics cover intraarticular hyaluronan injections and also
Cell-based therapies have taken the emerging field in many clinical directions. Among them, orthopaedic surgery is one of the most promising directions – due to the clinical needs, and because of the availability of the advanced cell-based constructs dedicated to bone and cartilage regeneration. The current practical clinical input is, however, below expectations – because of numerous difficulties which have their source in scientific, practical, finance and legal issues. Regarding legal issues, Advanced Therapy Investigational Medicinal Products (ATIMP) are regulated by three different legal orders. As medicines (according to the EU law, ATIMP is a pharmaceutical) – they are subject to pharmaceutical law; as cell-containing specimens – to cell and tissue banking regulations; as tested by registered clinical trials - they are subject to Good Clinical Practice rules and regulations. Formal requirements coming from these three areas are completely different, sometimes contradictory and incompatible with the specific nature of cell-based products. At the same time they involves the need for huge financial expenditures. We discuss these issues from the perspective of the university laboratory, which currently conducts clinical trials of the ATIMPs for three different clinical indications and, at the same time, has experience in the basic and applied scientific work at the laboratory level – towards improvement of osteogenic capacity of stem cells. With the undoubtful need of well documented scientific results, which is accompanied by complicated and imperfect regulations, we think that the scientific community focused around
Background. Definitive proof is lacking on mesenchymal stem cell (MSCs)
Introduction and aims. Growth plate cartilage is responsible for bone growth in children. Injury to growth plate can often lead to faulty bony repair and bone growth deformities, which represents a significant clinical problem. This work aims to develop a biological treatment. Methods. Recent studies using rabbit models to investigate the efficacy of bone marrow mesenchymal stem cells (MSC) to promote cartilage regeneration and prevent bone defects following growth plate injury have shown promise. However, translational studies in large animal models (such as lambs), which more closely resemble the human condition, are lacking. Results. Very recently, our labs have shown that ovine bone marrow MSC are multipotential and can form cartilage-like tissue when transplanted into mice. However, using a growth plate injury model in lambs, analogous to those described in the rabbit, autologous marrow MSC seeded into gelatine scaffold containing chondrogenic factor TGF-1, failed to promote growth plate regeneration. T o date, no large animal studies have reported successful regeneration of injured growth plate cartilage using MSC highlighting the possibility that ex vivo expanded MSC may not represent a viable
In the repair of condylar cartilage injury, synovium-derived mesenchymal stem cells (SMSCs) migrate to an injured site and differentiate into cartilage. This study aimed to confirm that histone deacetylase (HDAC) inhibitors, which alleviate arthritis, can improve chondrogenesis inhibited by IL-1β, and to explore its mechanism. SMSCs were isolated from synovium specimens of patients undergoing temporomandibular joint (TMJ) surgery. Chondrogenic differentiation potential of SMSCs was evaluated in vitro in the control, IL-1β stimulation, and IL-1β stimulation with HDAC inhibitors groups. The effect of HDAC inhibitors on the synovium and condylar cartilage in a rat TMJ arthritis model was evaluated.Aims
Methods
The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells. HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 106 PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological biomarker and in vitro studies will be performed to analyze the PLX-PAD mechanism of action. A sample size of 240 subjects was calculated providing 88% power for the detection of a 1 SPPB point treatment effect for a two-sided test with an α level of 5%.Aims
Methods
Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing. The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series.Aims
Methods
Cell therapies hold significant promise for the treatment of injured or diseased musculoskeletal tissues. However, despite advances in research, there is growing concern about the increasing number of clinical centres around the world that are making unwarranted claims or are performing risky biological procedures. Such providers have been known to recommend, prescribe, or deliver so called ‘stem cell’ preparations without sufficient data to support their true content and efficacy. In this annotation, we outline the current environment of stem cell-based treatments and the strategies of marketing directly to consumers. We also outline the difficulties in the regulation of these clinics and make recommendations for best practice and the identification and reporting of illegitimate providers. Cite this article:
Introduction The devastating and permanent effects of complete spinal cord injury are well documented. In animal models, olfactory ensheathing cells (OEC) transplanted into areas of complete spinal cord injury have promoted regeneration of the neural elements with reconnection of the descending motor pathways. This reproducible anatomical finding is associated with significant motor functional recovery. Accordingly,
The June 2014 Research Roundup360 looks at:Intraoperative irrigation a balance of toxicities; Ibandronate effective in bone marrow oedema; Risk stratification in damage control surgery; Osteoblast like cells potentially safe; Better wear and antibacterial?; Assessing outcomes in hip fracture.
Nonunion is one of the most troublesome complications to treat
in orthopaedics. Former authors believed that atrophic nonunion
occurred as a result of lack of mesenchymal stem cells (MSCs). We
evaluated the number and viability of MSCs in site of atrophic nonunion compared
with those in iliac crest. We enrolled five patients with neglected atrophic nonunions of
long bones confirmed by clinical examinations and plain radiographs
into this study. As much as 10 ml bone marrow aspirate was obtained
from both the nonunion site and the iliac crest and cultured for
three weeks. Cell numbers were counted using a haemocytometer and
vitality of the cells was determined by trypan blue staining. The
cells were confirmed as MSCs by evaluating their expression marker
(CD 105, CD 73, HLA-DR, CD 34, CD 45, CD 14, and CD 19). Cells number and
viability were compared between the nonunion and iliac creat sites.Objectives
Methods
Stem cells are a key component of regenerative medicine strategies. Particular areas of musculoskeletal application include cartilage and bone regeneration in arthritis and trauma. There are several types of stem cell and this article will focus on the adult derived cells. The review includes current issues and future developments.