header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

POTENTIALS AND CHALLENGES OF GROWTH PLATE REGENERATION USING EX VIVO EXPANDED MESENCHYMAL STEM CELLS OR MOBOLISING ENDOGENOUS PROGENITOR CELLS

Australian Orthopaedic Association Limited (AOA)



Abstract

Introduction and aims

Growth plate cartilage is responsible for bone growth in children. Injury to growth plate can often lead to faulty bony repair and bone growth deformities, which represents a significant clinical problem. This work aims to develop a biological treatment.

Methods

Recent studies using rabbit models to investigate the efficacy of bone marrow mesenchymal stem cells (MSC) to promote cartilage regeneration and prevent bone defects following growth plate injury have shown promise. However, translational studies in large animal models (such as lambs), which more closely resemble the human condition, are lacking.

Results

Very recently, our labs have shown that ovine bone marrow MSC are multipotential and can form cartilage-like tissue when transplanted into mice. However, using a growth plate injury model in lambs, analogous to those described in the rabbit, autologous marrow MSC seeded into gelatine scaffold containing chondrogenic factor TGF-1, failed to promote growth plate regeneration. T o date, no large animal studies have reported successful regeneration of injured growth plate cartilage using MSC highlighting the possibility that ex vivo expanded MSC may not represent a viable cellular therapy for growth plate injury repair. In addition, using a growth plate injury repair model in young rats, our studies have also focused on understanding mechanisms of the faulty repair and identifying potential targets for enhancing growth plate regeneration using endogenous progenitor cells. We have observed that bony repair of injured growth plate is preceded sequentially by inflammatory, fibrogenic, chondrogenic and osteogenic responses involving both intramembranous and endochondral ossification mechanisms. We have observed infiltration of mesenchymal progenitor cells into the injury site, some of which have the potential to differentiate to osteoblasts or chondrocytes and contribute to the bony repair of the injured growth plate.

Conclusion

This presentation will focus on our studies examining the efficacy of ex vivo expanded autologous MSC to enhance growth plate regeneration in the ovine model and work using a rat model aimed at identifying potential targets for enhancing cartilage regeneration by mobilising endogenous stromal progenitor cells.