Introduction. It is well accepted that larger heads provide more stability in total hip arthroplasty. This is due to an increase in jump height providing increased resistance to subluxation. However, other implant parameters also contribute to the bearing's stability. Specifically, the liner's rim design and the centre of rotation relative to the liner's face. Both these features contribute to define the Cup Articular Arc Angle (CAAA). The CAAA describes the degree of dysplasia of the acetabular liner, and plays an important role in defining the jump height. The aim of this study was to determine the difference in jump height between
Introduction:. Backside wear has been previously reported through in-vitro and in-vivo to have a significant contribution to the total wear in rotating bearing TKRs. The present study investigated the contribution of backside wear to the total wear in the PFC Sigma rotating platform mobile bearing TKR. In addition, the wear results were compared to the computed wear rates of the PFC Sigma fixed bearing TKR, with two different
Introduction. Cobalt chrome on polyethylene remains a widely used bearing combination in total joint replacement. However wear induced osteolysis, bulk material property degradation of highly cross-linked polyethylene (HXLPE) [1], and oxidation after implantation (thought to be as a result of lipid absorption or cyclic loading [2]) remains a concern. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended next generation HXLPE developed to maintain mechanical properties, minimise wear and to improve the oxidation resistance in the long-term. The aim of this study was to compare the in-vitro wear rate and mechanical properties of three different acetabular liners; conventional UHMWPE, HXLPE and ECIMA. Methods. Twelve liners (Corin, UK) underwent a 3 million cycle (mc) hip simulation. Three conventional UHMWPE liners (GUR1050, Ø32 mm, 30 kGy sterilised in Nitrogen), three HXLPE liners (GUR1020, Ø40 mm, 75 kGy cross-linking and EtO sterilised) and six ECIMA liners (0.1 wt% vitamin E GUR1020, Ø40 mm, 120 kGy cross-linking, mechanically deformed and annealed, and EtO sterilised) articulated against CoCrMo alloy femoral heads to ASTM F75 (Corin, UK). Wear testing was performed in accordance with ISO 14242 parts 1 and 2, with a maximum force of 3.0 kN and at a frequency of 1 Hz. The test lubricant used was calf serum with a protein content of 30 g/l and 1% (v/v) patricin added as an antibacterial agent. Volumetric wear rate was determined gravimetrically after the first 0.5 mc and every 1 mc thereafter. ASTM D638 type V specimens (3.2 mm thick) were machined from ECIMA material for uniaxial tension testing to ASTM D638. Ultimate tensile strength (UTS), yield strength and elongation values were measured. These values were compared to mechanical data available for the other material types. Results. There was a 94% and a 68% reduction in the wear rate for the ECIMA liners compared to the conventional UHMWPE and HXLPE liners respectively. There was an increase in UTS, yield strength and elongation of 11%, 11% and 15% respectively, for ECIMA compared to HXLPE. Discussion. The wear results reported in this study indicate that ECIMA is a very low wearing material which has the potential to reduce wear related osteolysis in-vivo. Importantly, the mechanical properties were generally maintained unlike the degradation found in many modified polyethylene materials and were more comparable to conventional UHMWPE than HXLPE. The reduced wear rate during in-vitro hip simulation of ECIMA compared to conventional UHMWPE, coupled with improved mechanical properties in comparison to HXLPE, makes ECIMA a promising next generation, advanced
Introduction. There is a demand for longer lasting arthroplasty implants driving the investigation of novel material combinations. PEEK has shown promise as an arthroplasty
Burroughs et al showed that frictional torque increases with increasing head size in a simple in vitro model and showed differences in frictional torque with different polyethylene materials [1]. Therefore, the purpose of this study was to evaluate the influence of
Introduction: Reduction of ultra high molecular weight polyethylene (UHMWPE) surface wear in total knee replacement (TKR) bearings may delay the onset of osteolysis and subsequent loosening of components. The aim of this study was to compare the effect of
Several options for high demand/high activity patients for bearings in THA exist. Each of them faces certain known and unknown risks of failure. There is a remarked trend to bigger diameter heads to reduce the incidence of dislocation for such patients. While combinations with hard-on-hard bearings have been used in such incidences, a Polyethylene (PE) option is desirable due to its less sensitivity to edge loading and price. A highly crosslinked sequentially annealed PE of the 3rd generation was prepared by sequentially crosslinking with appropriate annealing steps with a cumulative dose of 90 kGy and subsequent gas plasma sterilization. The structure of this material was determined using TEM, DSC and SAXS. Free radicals and oxidation was determined by ESR and IR spectroscopy. Mechanical evaluation in the unaged and aged condition were performed by quasi-static, dynamic and functional dynamic tests in comparison with negative controls. Wear testing was performed by ball-on-plate tests and hip joint simulators. PE inserts of various internal diameters up to 44mm and thicknesses of 4-8mm in comparison with a historic inert gas irradiation sterilized PE as negative control. These tests have been carried out at 3 institutions using different set-up and protocols. To look at worst case scenarios the simulator testing was done in an impingement mode and fatigue tests of the thinnest components where performed in 2 different fatigue set-ups up to 10 million cycles. The structure and crystallinity of the sequentially crosslinked PE were comparable to the controls. The radical concentration was reduced by more than 95% due to the sequential process employed and consequently the oxidation level after artificially aging remained at the level of untreated PE. 5 year storage data confirmed the stability of this polymer. All mechanical testing revealed the maintenance of the properties at the same level as the controls. The screening wear test revealed that the high sliding stress used in this set-up had no effect on the sequentially crosslinked PE even when aged, while the controls showed fatigue wear after a short time of testing. The decrease in volumetric wear compared to a negative control (28 mm head size) was on average 90% in volumetric independent of the head size and thickness of the PE liner. This result was confirmed by the studies at 2 other institutions with a wear reduction of 86 and 95% respectively. Impingement increased the wear rate marginally, without causing any fractures or failures of the components. The analysis of the wear particles from the simulator studies showed a marked decrease in number with close similarity in appearance and morphology to that from the control tests. Fatigue testing even in a luxation model showed no negative effect on the impact on the rim after 10 million cycles also with the thinnest components. Highly crosslinked, sequentially annealed PE from the perspective of tribological and fatigue testing can be used safely even in impingement and luxation situations. Other factors in the clinical usage of thin liners may play a role and need to be investigated further.
Sub-micron polyethylene particles produced by the wear of metal on ultra-high molecular weight polyethylene (UHMWPE) in artificial joints have been identified as a principle culprit in the osteolysis frequently found in the bone surrounding these implants. To eliminate UHMWPE debris, highly crosslinked (HXL) UHMWPE and hardon-hard bearing surfaces have been developed. This study compares the wear rates of 14 designs and/or material combinations (total of 48 specimens) tested on a hip simulator in the biomechanics lab at the University of Nebraska Medical Center. Twelve ceramic-on-metal (COM) (six 36mm and six 28mm, of high and low clearance (HC, LC)), twelve metalon-metal (MOM) (44mm, 3 TiN coated, 3 uncoated standard, and 6 resurfacing components), eighteen metal-on-UHMWPE (MOP) (36mm: six with CoCr-coated heads and six uncoated standard heads with conventional UHMWPE; 44mm: 3 conventional UHMWPE and 3 HXL), and six ceramic-on-UHMWPE (COP) (three 44mm and three 32mm all with conventional UHMWPE) were tested on a multi-station hip simulator (AMTI, Boston). The specimens were lubricated with bovine serum diluted to 20g/l protein concentration at 37°C and were subjected to the loading and rotations of the walking cycle as specified in ISO-14242-1 at 1Hz (for 5 million cycles (Mc) except where specified otherwise). The liners (and heads where specified) were cleaned and weighed at 0, 0.25, 0.5, and every 0.5Mc afterwards. For 36mm COM liners the wear rates of HC and LC were the lowest observed (−0.019±0.118mg/Mc and −0.061±0.044mg/Mc, respectively). All three 28mm COM HC and one LC liner exhibited “break-away” wear in that they would lose several milligrams (HC: 5.99mg, 6.37mg, 8.50mg, LC: 10.22mg) after showing nearly no measurable wear (HC: 0.905±0.467mg/Mc, 28mm LC: 0.422±0.982mg/Mc). (Note that COM heads weighs were not quoted here but none of them lost weight). TiN-coated MOM THRs (heads and liners) showed higher wear than the uncoated MOM THRs (8.53±4.07mg/Mc, 3.19±0.281mg/Mc, respectively) as the TiN wore away from all three coated heads and liners. The MOM resurfacing components showed wear rates of 2.77±1.27mg/Mc over 2Mc. The 36mm MOP liners (CoCr-coated and uncoated heads) showed wear rates of 55.6±4.26mg/Mc and 44.5±4.46mg/Mc, respectively, as the coating wore away from the metal heads. Wear rates of the 44mm MOP conventional and HXL liners were 72.0±2.81mg/Mc and 14.2±3.57mg/Mc respectively. For COP, the larger size wore at a higher rate than the smaller size (44mm: 97.4±3.08mg/Mc, 32mm: 51.3±12.2mg/Mc) over 2Mc. The 44mm COP THR displayed the highest observed wear rate. Our simulator results confirm low wear for hard-on-hard bearing couples (MOM, COM) except where coating failure had occurred. Size-36mm LC COM bearings faired the best of the four COM types tested (showing no measurable wear and no “break-away” wear). MOP THRs showed better wear performance when HXL UHMWPE was used, and also showed a sensitivity to femoral head coating removal. COP THRs showed high wear in the large 44mm size, and less in the smaller size. Simulator wear testing was able to successfully discriminate and characterize wear rates of different
The use of rotating hinge (RH) prostheses for severe primary as well as revision arthroplasty is widely established. Aim of this study was to investigate long term results of a new RH prosthesis (EnduRo®, B Braun, Germany), which uses carbon-fiber reinforced poly-ether-ether-ketone (CFR PEEK) as a new
Implants in total hip replacement (THR) are associated with different clinical and cost-effectiveness profiles,. We estimate the costs and outcomes for NHS patients in the year after THR associated with implant
Hip
Introduction. In an effort to provide a TKA
Introduction. The input mechanical properties of knee replacement
Background. The current use of a spherical prosthetic humeral head in total shoulder arthroplasty results in an imprecise restoration of the native geometry and improper placement of the center of rotation, maintained in a constant position, in comparison to the native head and regardless of glenoid component conformity. A radially-mismatched spherical head to allow gleno-humeral translation is a trade-off that decreases the contact area on the glenoid component, which may cause glenoid component wear. This finding suggests that the use of a non-spherical head with a more conforming glenoid component may reduce the risk of glenoid component wear by allowing gleno-humeral translation while increasing the contact area. A non-spherical prosthetic head more accurately replicates the head shape, rotational range of motion and gleno-humeral joint kinematics than a spherical prosthetic head, compared with the native humeral head. The combination of inversion of the
Introduction. PEEK-OPTIMA™ has been considered as an alternative
Reduction of ultra high molecular weight polyethylene (UHMWPE) surface wear in total knee replacements (TKR) may delay the onset of osteolysis and loosening of components. This study examined the wear of fixed bearing and rotating platform (RP) mobile bearing TKR with two different
Hemiarthroplasty is a common procedure that is an attractive alternative to total arthroplasty because it conserves natural tissue, allows for quicker recovery, and has a lower cost. One significant issue with hemiarthroplasties is that they lead to accelerated wear of the opposing native cartilage, likely due to the high stiffness of the implant. The purpose of this study was to investigate the range of currently available biomaterials for hemiarthroplasty applications. We employed a finite-element (FE) model of a radial head implant against the native capitellum as our joint model. The FE model was developed in ABAQUS v6.14 (Dassault Systèmes Simulia Corp., Providence, RI, USA). A solid axisymmetric concave implant with seven different materials and the native radial head were evaluated, six modelled as elastic materials with different Young's moduli (E) and Poisson's Ratios (ν), and one modelled as a Mooney-Rivlin hyperelastic material. The materials investigated were CoCr (E=230 GPa, ν = 0.3), PEEK (E=3.7 GPa, ν = 0.36), HDPE (E=2.7 GPa, ν = 0.42), UHMWPE (E=0.69 GPa, ν = 0.49), Bionate 75D (E=0.288 GPa, ν = 0.39), Bionate 55D (E=0.039 GPa, ν = 0.45), and Bionate 80A (modelled as a Mooney-Rivlin hyperelastic material). A load of 100 N was applied to the radius through the center of rotation representing a typical load through the radius. The variable of interest was articular contact stress on the capitellum. The CoCr implant had a maximum contact stress over 114% higher than the native radial head. By changing the material to lower the stiffness of the implant, the maximum contact stress was 24%, 70%, 105%, 111%, 113%, and 113% higher than the native radial head for Bionate 80A, Bionate 55D, Bionate 75D, UHMWPE, HDPE, and PEEK respectively. This work shows that lowering implant stiffness can reduce the contact stress on cartilage in hemiarthroplasty implants. By changing the material below a Young's modulus of ∼100 MPa elevated stresses on the capitellum can be markedly reduced and hence potentially reduce or prevent degenerative changes of the native articulating cartilage. Low stiffness implant materials are not a novel concept, but to date there have been few that investigate materials (such as Bionate) as a potential load
Introduction. The complex process of inflammation and osteolysis due to wear particles still is not understood in detail. So far, Ultra-high-molecular-weight-polyethylene (UHMWPE) is the
It has been seven years since silicon nitride (Si. 3. N. 4. ) was first proposed as a new
Introduction. Silicon nitride (SiN) is a recently introduced