Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

SILICON NITRIDE BEARINGS FOR TOTAL JOINT ARTHROPLASTY

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 1.



Abstract

It has been seven years since silicon nitride (Si3N4) was first proposed as a new bearing material for total hip arthroplasty [1]. Although its introduction into this application has been hampered by regulatory and clinical hurdles, it remains a strong candidate for advancing the state of care in patients undergoing joint replacement. Si3N4 has a distinctive set of properties, such as high strength and fracture toughness, inherent phase stability, low wear, scratch resistance, biocompatibility, hydrophilicity, excellent radiographic imaging, and bacterial resistance, many of which are not fully realized with other bioceramics. This combination of properties is desirable for demanding structural implants in the hip, knee and other total joints. Of foremost concern to clinicians is the wear behavior of any new or novel bearing material. Minimization of wear debris and prevention of corresponding osteolytic lesions are essential regardless of whether the artificial implant is articulating against itself, a metallic or polymeric counterpart. In this regard, Si3N4 may have a unique advantage. Other bearing couples rely solely on the presence of a biologic lubricating film to minimize erosive wear. However, Si3N4 forms a tribochemical film between the articulation surfaces consisting of silicon diimide Si(NH)2, silicic acid Si(OH)4, and ammonia groups NH3, NH4OH. Depending upon the bearing couple, this tribochemical film generally produces low friction. It is self-replenishing and resorbable, leading to the minimization of wear debris within the joint capsule. In this paper, we will review the essential physical, mechanical, and surface chemistry of Si3N4, and contrast these properties with other available bioceramics. Results from hip simulator testing of Si3N4 femoral heads on conventional and highly cross-linked polyethylene will be presented and discussed. Data will demonstrate that various Si3N4 bearing couples have wear comparable to other bioceramics. Microscopy and spectroscopic examinations of surfaces will provide a view of the surface stoichiometry and chemical stability of Si3N4 in comparison to other bioceramics. Laboratory friction tests will be reported, which show that the tribochemistry of the lubricating film generated by Si3N4 favors the use of highly cross-linked polyethylene as a counterface material. Overall results will demonstrate that silicon nitride is poised to become a new generation biomaterial for total joint arthroplasty.


*Email: