header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 497 - 497
1 Sep 2009
Oakland R Furtado N Timothy J Hall R
Full Access

INTRODUCTION: In the spinal column, bone metastases (BM) and lesions arising from multiple myeloma (MM) can cause severe weakening of the vertebral body (VB) leading to an increased risk of fracture1. These vertebral fractures may induce severe pain, deformity and increased risk of neurological deficit2. At present, however, there is very little known about the mechanical behaviour either of the infiltrated vertebrae or that following vertebroplasty (VP). The purpose of this preliminary investigation was to evaluate (i) the mechanical behaviour of vertebrae with lesion involvement, and (ii) the effectiveness of VP with coblation.

METHODS: Individual vertebrae from two spines, one with MM (n=13) and one with BM secondary to bladder cancer (n=12) were dissected free of soft tissue with the posterior elements retained. Three MM vertebrae with evidence of previous fracture were excluded. Each vertebrae was fractured under an eccentric flexion load from which fracture strength and stiffness were derived3. VBs were then assigned to two groups. In group 1, lesion material was removed by coblation prior to VP and in group 2, no coblation was performed prior to VP. All vertebrae were fractured post-augmentation under the same loading protocol. At each stage microCT assessments were conducted to investigate lesion morphology and cement volume/distribution.

RESULTS: MM vertebrae were characterised by several small lesions, severe bone degradation and multiple compromise of the cortical wall. In contrast, large focal lesions were present in the BM vertebrae and the cortical wall generally remained intact. The initial failure strength of the MM vertebrae were significantly lower than BM vertebrae (L=2200N vs 950N, P< 0.001). A significant improvement in relative fracture strength was found post augmentation for both lesion-types (1.42 ± 0.51, P=0.0006). Coblation provided a marginally significant increase in the same parameter post-augmentation (P=0.08) and, qualitatively, improved the ease of injection.

CONCLUSIONS: Bladder BM and MM vertebral lesions showed significant variations in lesion morphology, bone destruction and the level of cortical wall breach, causing significant changes in the bone fracture behaviour. Account should be taken of these differences to optimise the VP intervention in terms of cement formulation and delivery. Preliminary results suggest the current VP treatment provides significant improvements in failure strength post-fracture.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 485 - 486
1 Aug 2008
Furtado N Oakland R Wilcox R Hall R
Full Access

Introduction: Percutaneous vertebroplasty (PVP) is a treatment option for osteoporotic vertebral compression fractures (VCFs). Short-term results are promising but longer-term studies have demonstrated an accelerated failure rate in the adjacent vertebral body (VB). Limited research has been conducted into the effects of prophylactic PVP in osteoporotic vertebrae. The objective of this study was to investigate the biomechanical characteristics of prophylactic vertebral reinforcement and post-fracture augmentation.

Methods: Human vertebrae were assigned to two scenarios: Scenario 1 used an experimental model for simulating VCFs followed by cement augmentation; Scenario 2 involved prophylactic augmentation using vertebroplasty. μCT imaging was performed to assess the bone mineral density (BMD), vertebral dimensions, fracture pattern and cement volume. All augmented VBs were then axially compressed to failure.

Results: Product of BMD value and endplate surface area gave the best prediction of failure strength when compared to actual failure strength of specimens in scenario 1. Augmented VBs showed an average cement fill of 23.9%±8.07% S.D.. In scenario 1, there was a significant post-vertebroplasty factorial increase of 1.72 and in scenario 2 a 1.38 increase in failure strength. There was a significant reduction in stiffness following augmentation for scenario 1 (t=3.5, P=0.005). Stiffness of the VB in scenario 2 was significantly greater than observed in scenario 1 (t=4.4, P=0.0002).

Discussion: Results suggest that augmentation of the VB post-fracture significantly increases failure load, whilst stiffness is not restored. Prophylactic augmentation was seen to increase failure strength in comparison to the predicted failure load. Stiffness appears to be maintained suggesting that prophylactic PVP maintains stiffness better than PVP post-fracture.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 485 - 485
1 Aug 2008
Oakland R Furtado N Wilcox R Hall R
Full Access

Introduction: A feature of osteoporosis is vertebral compression fractures (VCF). Experiments looking at predicting compressive strength of human lumbar vertebrae have showed a correlation between compressive strength, bone density and size of vertebral endplates. The objective of this study was to compare the actual versus predicted failure strength of osteoporotic human vertebrae in relation to creating a validated experimental model for a vertebral compression fracture.

Methods: Twenty-six human vertebrae underwent CT scanning to evaluate bone mineral density (BMD) from a large and small region of interest (ROI) within the vertebral body (VB). Cranial, caudal and verage endplate surface area (SA) measurements were recorded. Specimens were axially compressed to failure and a regression analysis undertaken in which the failure load was fitted using both BMD alone and the product of the BMD and endplate SA.

Results: Measurements of BMD from a large or small ROI showed a poor correlation when compared to vertebral failure strength. The product of BMD and endplate SA showed significant correlations with failure strength. The regression explains a significant proportion of the variation of the response variable.

Discussion: Results from this study are consistent with published data which have established a good correlation between the product of endplate SA and BMD to vertebral compressive strength. BMD values from a large ROI and average or caudal endplate area provide the best prediction of failure strength. Experience from this study suggests that the experimental model is reproducible and accurate, however, further work is required on a larger data set to verify initial findings.