Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A BIOMECHANICAL INVESTIGATION OF VERTEBROPLASTY IN OSTEOPOROTIC COMPRESSION FRACTURES AND IN PROPHYLACTIC VERTEBRAL REINFORCEMENT



Abstract

Introduction: Percutaneous vertebroplasty (PVP) is a treatment option for osteoporotic vertebral compression fractures (VCFs). Short-term results are promising but longer-term studies have demonstrated an accelerated failure rate in the adjacent vertebral body (VB). Limited research has been conducted into the effects of prophylactic PVP in osteoporotic vertebrae. The objective of this study was to investigate the biomechanical characteristics of prophylactic vertebral reinforcement and post-fracture augmentation.

Methods: Human vertebrae were assigned to two scenarios: Scenario 1 used an experimental model for simulating VCFs followed by cement augmentation; Scenario 2 involved prophylactic augmentation using vertebroplasty. μCT imaging was performed to assess the bone mineral density (BMD), vertebral dimensions, fracture pattern and cement volume. All augmented VBs were then axially compressed to failure.

Results: Product of BMD value and endplate surface area gave the best prediction of failure strength when compared to actual failure strength of specimens in scenario 1. Augmented VBs showed an average cement fill of 23.9%±8.07% S.D.. In scenario 1, there was a significant post-vertebroplasty factorial increase of 1.72 and in scenario 2 a 1.38 increase in failure strength. There was a significant reduction in stiffness following augmentation for scenario 1 (t=3.5, P=0.005). Stiffness of the VB in scenario 2 was significantly greater than observed in scenario 1 (t=4.4, P=0.0002).

Discussion: Results suggest that augmentation of the VB post-fracture significantly increases failure load, whilst stiffness is not restored. Prophylactic augmentation was seen to increase failure strength in comparison to the predicted failure load. Stiffness appears to be maintained suggesting that prophylactic PVP maintains stiffness better than PVP post-fracture.

Correspondence should be addressed to: Mr John O’ Dowd, SBPR, c/o BOA, The Royal College of Surgeons, 35–43 Lincoln’s Inn Fields, London WC2A 3PE.