header advert
Results 21 - 37 of 37
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 2 - 2
1 Sep 2012
Li R Qamirani E Atesok K Nauth A Wang S Li C Schemitsch EH
Full Access

Purpose

Angiogenesis and osteogenesis are essential for bone growth, fracture repair, and bone remodeling. VEGF has an important role in bone repair by promoting angiogenesis and osteogenesis. In our previous study, endothelial progenitor cells (EPCs) promoted bone healing in a rat segmental bone defect as confirmed by radiological, histological and microCT evaluations (Atesok, Li, Schemitsch 2010); EPC treatment of fractures resulted in a significantly higher strength by biomechanical examination (Li, Schemitsch 2010). In addition, cell-based VEGF gene transfer has been effective in the treatment of segmental bone defects in a rabbit model (Li, Schemitsch et al 2009); Purpose of this study: Evaluation of VEGF gene expression after EPC local therapy for a rat segmental bone defect.

Method

Rat bone marrow-derived EPCs were isolated from the rat bone marrow by the Ficoll-paque gradient centrifuge technique. The EPCs were cultured for 7 to 10 days in endothelial cell growth medium with supplements (EGM-2-MV-SingleQuots, Clonetics). and collected for treatment of the rat segmental bone defect. EPCs were identified by immunocytochemistry staining with primary antibodies for CD34, CD133, FLK-1, and vWF. A total of fifty six rats were studied. A five millimeter segmental bone defect was created in the middle 1/3 of each femur followed by mini plate fixation. The treatment group received 1×106 EPCs locally at the bone defect and control animals received saline only. Seven control and seven EPC treated rats were included in each group at 1, 2, 3 and 10 weeks. Animals were sacrificed at the end of the treatment period, and specimens from the fracture gap area were collected and immediately frozen. Rat VEGF mRNA was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantified by VisionWorksLS. All measurements were performed in triplicate.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 222 - 222
1 Sep 2012
Li C Hussain A Pamu J Kamali A
Full Access

INTRODUCTION

Hip wear simulator test results could be affected by many non-bearing related factors such as fixation surface conditions, equipment calibration and component set-up. In an effort to improve the accuracy, reliability and repeatability of hip simulator test, a quality management system has been established at the IDC hip tribology laboratory, which has been accredited by UKAS (United Kingdom Accreditation Service) in accordance with the recognised international standard ISO17025. This study demonstrates that under well-controlled laboratory and testing conditions, satisfactory repeatability can be achieved during hip simulator studies.

METHODS

Between 2008 to 2010, ten 50 mm Birmingham Hip Resurfacing (BHR) devices were tested by the IDC tribology laboratory using two ProSim hip wear simulators in three different tests (T1, T2 and T3). All tests were performed following the same IDC testing protocols at 1 Hz frequency for 5 million cycles (Mc) or until after a steady state was reached. Paul type stance phase loadings with a maximum load of 3 kN and a swing phase load of 0.3 kN was used. The flexion and extension angles were 30 and 15 degree. The internal/external rotation angel was ±10 degree. Wear was measured gravimetrically using an analytical balance (Mettler, Toledo xp504) with an accuracy of 0.1 mg.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 568 - 568
1 Sep 2012
Hussain A Kamali A Li C Ashton R
Full Access

INTRODUCTION

Whilst there is a great deal of research on hip implants, few studies have looked at implant orientation and the subsequent effect upon the wear performance of a hip resurfacing. This study aimed to measure implantation angles through radiographic analysis and linear wear for retrieved acetabular cups in order to investigate possible causal links between wear and implant orientation.

MATERIALS & METHODS

Seventy Birmingham Hip Resurfacing (Smith & Nephew, UK) cups with known time in vivo were analysed. Linear wear of retrieved cups were assessed using a Talyrond 290 roundness machine. Deviations from the characteristic manufactured profile, was identified as a region of wear. Polar measurements across the wear region were taken to determine wear. The linear wear rate (LWR) of a component was defined as the linear wear (μm) divided by the duration of the implant life in vivo (years). Cups which showed the wear crossing over the edge of the cup were classified as edge loaded (EL). For all non-edge loaded (NEL) cups, the wear area was within the bearing surface. Cup orientation angles were conducted for 31 cups. This was determined by superimposing BHR models of appropriate size, generated by CAD ProEngineer Wildfire 4, onto anterior-posterior x-rays. Anatomical landmarks and specific features of the BHR were used as points of reference to determine cup version and inclination angles.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 84 - 84
1 Sep 2012
Pamu J Hussain A Daniel J Kamali A Li C
Full Access

Introduction

Ion analysis has been used as one of the key indicators to assess the performance of MoM devices in patients. Modular devices, in particular having larger overall surface area (the stem and sleeve), and locking interfaces (head – bore, sleeve- taper and sleeve-bore, stem-taper surfaces) than other MoM devices are expected to release greater number of ions. Concerns have been expressed that the ion release at the taper junction might be a potential cause leading to the failure of the implant [Garbuz et al, 2010].

The aim of this study was to look into the wear and the associated ion release from the taper junction and the articulating surface of modular devices.

Method

For the first time a novel design has been used to isolate the taper junction on modular devices on the hip simulators in order to compare the wear at the taper junction and articulating surface. The taper junction has been isolated in a small gaiter, while the head and cup were contained in a large gaiter. CoCrMo sleeves having an offset of +8 mm have been used on 50 mm modular heads along with Ti6Al4V stems. The acetabular components were standard BHR cups. Three devices (Smith & Nephew, UK) have been tested with newborn calf serum as a lubricant (in the large gaiter) and also as the medium containing the taper junction (in the small gaiter). The serum samples from the articulating surface and taper junction were analysed using HR-ICPMS. The locking interfaces at the taper junction have been left intact throughout the duration of the test. Both the head and the cup have been tested under anatomical conditions using the standard implant development centre's (IDC) profile for 2 million cycles (Mc). The lubricant was newborn calf serum with 0.2% sodium azide diluted with de-ionised water to achieve protein concentration of 20 mg/ml. The flexion/extension was 30°/15° and the internal/external rotation was ±10°. The force was Paul-type stance phase loading with a maximum load of 3 kN and a standard ISO swing phase load of 0.3 kN. The frequency was 1 Hz, with an 8 hour stop after every 16 hours of testing.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 71 - 71
1 Sep 2012
Hussain A Kamali A Li C Pamu J
Full Access

Metal-on-Metal devices generate significantly lower volumetric wear than conventional total hip replacements. However, clinically some patients may suffer some form of laxity in their joints leading to subluxation of the joint, which in turn may cause edge loading of an implant thereby increasing the chances of failure due to higher than expected wear.

In this study, the effect of subluxation on MoM implant wear was investigated on a hip joint simulator.

Materials & Methods

Two groups of 44 mm MoM devices were tested, n=3 in each group. The devices were subjected to 1 and 2 mm of subluxation. The flexion/extension was 30° and 15° respectively, internal/external rotation was ±10°, and cup inclination was 35°. The force was Paul type stance phase loading with a maximum load of 3 kN, with ISO swing phase load of 0.3 kN, run at 1 Hz.

The test was carried out on a ProSim deep flexion & subluxation hip wear simulator (SimSol, UK). Rather than separating the head and the cup (microseparation), or reducing the swing phase load, this simulator is equipped with a novel mechanism to achieve translation of the head, while subjecting the devices to subluxation. During the swing phase, a controlled lateral force necessary for the translation of the head is applied by a cam mechanism, head retraction will then take place on heel strike.

The lubricant used was new born calf serum with 0.2 wt. % sodium azide concentration diluted with de-ionised water to achieve average protein concentration of 20 g/l. Lubricant was changed every 250k cycles. Gravimetric wear measurements have been taken at 0.25 & 0.5 Mc stages.

Results

Tests conducted with 1mm (Group 1) and 2mm (Group 2) subluxation significantly increased volumetric wear compared to standard hip simulator tests [1]. At 0.5 million cycles, group 1 and 2 produced an average volume loss of 4.38±0.98 mm3 (95% CL) and 7.07±1.64 mm3 (95% CL) respectively.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 239 - 239
1 Sep 2012
Hussain A Hussain A Kamali A Li C Pamu J Ashton R
Full Access

INTRODUCTION

Analysis of retrieved ceramic components have shown areas of localized ‘stripe wear’, which have been attributed to joint laxity and/or impingement resulting in subluxation of the head, causing wear on the edge of the cup. Studies have been conducted into the effects of mild subluxation, however few in vitro tests have looked at severe subluxation. The aim of this study was to develop a more clinically relevant subluxation protocol.

MATERIALS & METHODS

Seven (Subluxation n=4; standard test n=3) of 36mm Biolox Forte (R3, Smith & Nephew) ceramic devices were tested for 0.5m cycles (mc). Two of the subluxed joints were further tested to 1 Mc. The devices were subjected to subluxation under standard testing conditions. The flex/ext was 30° and 15° respectively, with internal/external rotation of ±10°. The force was Paul type stance phase loading with a maximum load of 3 kN, and a standard ISO swing phase load of 0.3 kN at 1 Hz.

The test was conducted on a ProSim hip joint wear simulator (SimSol, UK). The simulator is equipped with a novel mechanism to achieve translation of the head, to achieve subluxation. During the ISO swing phase load of 0.3kN, a controlled lateral force required for the translation of the head is applied by a cam mechanism, head retraction then occurs during heel strike.

The lubricant used was new born calf serum diluted with de-ionised water to achieve average protein concentration of 20 g/l, with 0.2 wt % concentration NaN3, and changed every 250k cycles. Measurements have been taken at 0.5 & 1 mc stages.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 97 - 97
1 Jun 2012
Hussain A Packer K Li C Kamali A
Full Access

Introduction

All hip replacements depend upon good orientation and positioning to ensure that implants function well in vivo. Mal-orientated devices can lead to poor patient gait, poor range of motion, impingement, edge loading and high wear, which in turn may result in the premature failure of the implants.

Aim

To investigate the correlation between edge loading and wear on retrieved implants through linear wear analysis and radiographic examination of implants in vivo.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 108 - 108
1 Jun 2012
Pamu J Kamali A Daniel J Hussain A Li C
Full Access

Introduction

Hip implant research has been carried out for decades using hip simulators to reflect situations in vivo. With regards to metal on metal (MoM) implant testing, it has been reported that there is no significant difference between the wear generated by various cobalt chromium (CoCr) microstructures. On the contrary, higher wear, metal ion levels and subsequent failures have been reported in heat treated (high carbon, low carbide) devices compared to as cast (high carbon, high carbide) devices in vivo. During testing, the bearing surfaces may be masked from the effect of microstructure on wear under fast and continuous cycles, while in vivo, the extensive range of kinetics and kinematics, stop/start motion, varying walking frequencies could break down the fluid film, resulting in a less favourable lubrication regime. The aims of this study were to develop a more physiologically relevant hip simulator test protocol, and investigate the effect of microstructure on wear.

Materials & Methods

Three pairs of 50mm as cast (AC) and four pairs of 50mm double heat treated (DHT) CoCr MoM devices were tested in a ProSim hip simulator. In order to determine the frequency for testing, Patients' activities have been monitored using a Step Activity Monitor (SAM) device. The data showed a relatively slower walking pace (frequency) than that used in the hip simulator studies. The new frequency, along with stop/start motion and various kinetics and kinematics profiles have been used in putting together a more physiologically relevant hip simulator test protocol. The lubricant used in this study was new born calf serum with 0.2 % (w/v) sodium azide concentration diluted with de-ionised water to achieve an average protein concentration of 20 g/l. Gravimetric measurements have been taken at 0.5, 1, 1.5 & 2 million cycle (Mc) stages and ion analysis has been carried out on the serum samples.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 246 - 246
1 Jul 2011
Li C Li R McKee MD Schemitsch EH
Full Access

Purpose: Vascular Endothelial Growth Factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy accelerates bone healing of a rabbit tibia segmental bone defect in-vivo, and increases osteoblast proliferation and mineralization in-vitro. The aim of this project was to examine the effect of exogenous human VEGF (hVEGF) on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model.

Method: The osteoblasts were obtained from the rat periosteum. The fibroblasts were obtained from the rat dermal tissue. The cells were then cultured to reach 60% confluence and transfected with hVEGF using Superfect. Four groups were:

osteoblast-hVEGF,

fibroblast-hVEGF,

Osteoblasts alone, and

Fibroblasts only.

The cultured cells were harvested at 1, 3 and 7 days after the transfection. The total mRNA was extracted (TRIZOL); both hVEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantified by VisionWorksLS.

Results: The hVEGF mRNA was detected by RT-PCR from transfected osteoblasts after three days of gene transfection. The hVEGF mRNA expression in transfected fibroblasts increased exponentially at days 1, 3 and 7 after the transfection. We compared the endogenous rat VEGF mRNA expression level of the osteoblasts or fibroblasts that were transfected with hVEGF with the cells without the transfection. The hVEGF transfected osteoblasts had a greater rat VEGF mRNA expression than the non-transfected osteoblasts. Furthermore, when hVEGF was transfected to the rat fibroblasts, the endogenous mRNA expression level measured was also greater than that from the non-transfected fibroblasts. Rat VEGF mRNA expression increased in the first three days of the hVEGF transfection, but the expression level was reduced at Day 7.

Conclusion: These results suggest that cell-based hVEGF gene therapy enhances endogenous rat VEGF mRNA expression in both osteoblasts and fibroblasts.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 220 - 220
1 May 2011
Li C Kamali A Packer K Ashton R
Full Access

Introduction: Although clinical results for the Metal-on-Metal (MoM) devices have been excellent, recently some concerns have been raised regarding the occurrence of periprosthetic soft tissue lesions (PSTL) in some patients with MoM devices. Clinical studies and retrieval analyses have shown that devices revised due to groin pain and PSTL generally have significantly higher wear that has been attributed to edge loading of the implants.

Aim: The retrieval study was to investigate the cause of edge-loading of MoM devices in vivo.

Materials and Methods: In this study 13 retrieved Birmingham Hip Resurfacing (BHR) devices were examined. All devices were supplied with radiographs showing the in vivo position of the implant. Linear wear was assessed using a Taylor-Hobson Talyrond 290 roundness machine. Multiple roundness profiles were obtained to locate the area of maximum wear on each component. Edge loaded devices were identified when the maximum linear wear occurred at the edge of the cup. Non-edge loaded pairs showed wear area within the articulating surface of the cup.

The in vivo abduction angle and version angle of the cup were determined by superimposing the BHR models onto the radiographs (ProEngineer Wildfire 4 with ISDX II extension software) using anatomical references and specific features of the BHR.

Results: Linear wear: Among the 13 devices investigated, 11 were edge loaded with the maximum linear wear occurred at the edge of the cup. The remaining 2 pairs were non-edge loaded. The average joint linear wear rate of the edge loaded devices was 49.9 μm per year, and that for the two non-edge loaded devices was 2.4 μm per year. Edge loaded pairs had far greater linear wear than non-edge loaded components.

Cup orientation: The abduction angles of the two non-edge loaded cups were 31° and 39°, and their version angles were 12 and 16° respectively. These angles were within recommended orientation for the BHR. In contrast, the adduction angles and/or version angles of all edge loaded devices were outside the recommended orientation. Their abduction angle varied from 40° to 66° and version angle from 5° to 46°.

The edge loaded devices with higher inclination angles and/or higher version angels generally had higher linear wear. There is strong correlation between the cup orientation and the linear wear of the implant.

Conclusion: Mal-orientated devices in this study showed clear signs of edge loading which in turn resulted in significant increase in wear compared to the well orientated/non-edge loaded devices.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 221 - 221
1 May 2011
Hussain A Kamali A Li C Pamu J Daniel J
Full Access

Introduction: In vitro studies have shown that low clearance bearings have the potential to generate low wear. However, cementless acetabular cups are designed to be press fitted into the acetabulum, which could generate compressive stresses and non-uniform cup deformation during implantation. Deformation of the low clearance acetabular cups could also potentially lead to clamping or seizure of the joints and high frictional torque leading to implant failure. To obtain the benefit of low clearance and low wear, without compromising the tribological performance of the cup, a deflection compensation (DefCom) cup was designed. DefCom offers the benefits of low wear associated with low clearance components whilst reducing the risk of component seizure and high frictional torque due to component deformation.

Aim: The study was conducted in order to evaluate the tribological performance of a DefCom acetabular cup.

Materials and Methods: 50 mm diameter metal-on-metal DefCom hip resurfacing cups were used in this study. The components had an average clearance of 105±3 μm at the articulating sphere. Three of the cups were deformed plastically, along the ilial-ischeal column of the acetabulum. The degree of deformation was measured using the coordinate measuring machine, measuring the change in diameter of the cup in the direction of deformation. The cups were deformed on average by 65μm. The devices were tested in a ProSim hip wear Simulator for 5 million cycles. The lubricant was new born calf serum with 0.2% sodium azide diluted with de-ionised water to achieve protein concentration of 20 mg/ml. The flexion/extension was 30° and 15° with an internal/external rotation of ±10°. The force was Paul-type stance phase loading with a maximum load of 3 kN and a swing phase load of 0.3 kN, conducted at 1 Hz.

Results: The DefCom and deformed DefCom components showed a similar bi-phasic wear pattern to that of the BHR devices. Showing a period of ‘running in’ wear up to 1 Mc and then a reduced wear rate during the steady state phase from 1 Mc onwards. The DefCom devices produced a wear rate of 0.24 mm3/Mc, whilst the deformed DefCom joints produced a wear rate of 0.48 mm3/Mc for the running-in phase. Steady state wear was achieved for all joints after 1 Mc. The average steady state wear (1.0–5.0 Mc) rate for the DefCom joints was 0.12 mm3/Mc, with 0.14 mm3/Mc for the deformed joints joint. The wear rate for the non-deformed DefCom device is lower than that generated by the BHR, which were 0.72 mm3/Mc and 0.18 mm3/Mc for the running-in and steady state wear, respectively.

Conclusion: The study has shown that the DefCom acetabular cup has the potential to reduce the initial running-in wear by reducing the clearance at the contact area between the head and cup, whilst compensating for deformation that may occur during cup implantation.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 521 - 521
1 Oct 2010
Kamali A Hussain A Li C
Full Access

Introduction: Based on the clinical success of large head metal-on-metal (MoM) bearings technologies in the resurfacing arena, a multi-bearing acetabular system, known as R3 system, was developed by Smith & Nephew. The novel R3 system utilizes porous coated Ti-6-4 shells in which liners of crosslinked UHMWPE, ceramic, or as-cast CoCr liners can be placed. The as-cast CoCr metallurgy and microstructure is identical to the clinically successful Birmingham Hip Replacement (BHR) resurfacing system. The design and manufacturing aspects such as diametrical clearance, surface roughness, and spherical form are all identical for the two systems.

Aim: to evaluate the tribological performance of R3 devices as compared to that of standard BHR devices.

Materials and Methods: Five pairs of 46 mm MoM R3 devices (Smith & Nephew) and three pairs of 48 mm BHR devices (Smith & Nephew) were tested in a ProSim hip wear Simulator. The lubricant was new born calf serum with 0.2% sodium azide diluted with de-ionized water to achieve protein concentration of 20 g/l. The flexion/extension was 30° and 15° and the internal/external rotation was +/− 10°. The force was Paul-type stance phase loading with a maximum load of 3 kN and a standard ISO swing phase load of 0.3 kN. The frequency was 1 Hz.

One R3 joint and one BHR device were friction tested in a ProSim hip friction simulator at 0, 3 and 5 million cycles of wear testing. The test was conducted in new born calf serum with added carboxy methyl cellulose (CMC) to generate viscosities of 1 to 100 cP. The loading cycle was set at maximum loads of 2 kN and minimum load of 0.1 kN. The flexion/extension was 30° and 15°, and the frequency was 1 Hz.

Results and Discussions:

Friction: The coefficient of friction (COF) of the R3 joint varied from 0.08 to 0.14 depending on the viscosity of the serum and cycles of wear simulation test. Under physiologically relevant lubricant conditions (1, 3 and 10 cP), the COF for the R3 device tested was comparable to that of the standard BHR device.

Wear: The R3 devices generated typical characteristics of wear to the BHR devices, with a higher wear rate during the initial running in period (0 – 0.5 Mc) followed by a low steady state wear rate after 0.5 Mc. The average wear rate at 0.5 Mc was 1.86 mm3/Mc for the R3 and 1.80 mm3/Mc for the BHR devices. The wear rate during the steady state for the R3 and the BHR devices was reduced to 0.09 mm3/Mc and 0.12 mm3/Mc respectively. The difference in average wear rates between the BHR and R3 devices during the running in and steady states were not statistically significant (p > 0.05).

Conclusion: The test results presented in this study show that the tribological performances of the R3 and the BHR devices are comparable.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 519 - 519
1 Oct 2010
Hussain A Daniel J Kamali A Li C Pamu J
Full Access

Introduction: The accepted method of assessing wear following a hip simulator test has been to use a precision balance. As the MoM devices produce significantly less weight loss than hard-on-soft bearings, the measurements of MoM devices are now almost at the detection limit of many balances. There is a need for a method that can be used in conjunction with gravimetric analysis that will provide an accurate assessment of ion concentration levels that will support the gravimetric measurements.

Aim: To develop a method to assess wear using metal ion analysis in order to support gravimetric measurements of metal on metal devices.

Materials and methods: Hip simulator test: Three pairs of 50 mm diameter as cast CoCr MoM devices were tested in a ProSim hip wear simulator (SimSol Stockport/UK) under physiologically relevant conditions. The lubricant was new born calf serum with 0.2 % sodium azide concentration diluted with de-ionised water for protein concentration of 20 g/l. Stop-start motion was implemented every 100 cycles. Lubricant changed every 125 k cycles. The frequency was 0.5 Hz. Wear was assessed gravimetrically at every 0.5 million cycles (Mc) interval.

Ion analysis: Serum was collected from test station and allowed to settle for 12 hours. An aliquot of 20 ml from lubricant was collected. Each sample was centrifuged at 2500 g-force for 10 minutes. A 10 ml aliquot was collected from each sample and was further centrifuged at 2500 g-force for 10 minutes. 1.5 ml aliquot was collected and stored at −20 °C. A high resolution inductively-coupled plasma mass spectrometry instrument (ELEMENT, ThermoFinnigan MAT, Bremen/Germany) was then used for the analysis of metal ions.

Results and Discussion: The average cumulative metal ion levels at 0.5, 1 and 1.5 Mc showed similar trends in wear to that of the average cumulative weight loss assessed gravimetrically. There were similar biphasic wear trends in both metal ion levels and gravimetric weight losses. Other studies have also shown similar correlation between volume loss and ion concentration levels. The percentage distribution of Co, Cr and Mo in the metal ion samples are in close agreement with nominal chemical composition of the material tested.

Conclusion: This study showed that metal ion measurements can help to confirm gravimetrically measured material loss.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 399 - 399
1 Jul 2010
Kamali A Pamu J Hussain A Li C Daniel J Counsell L
Full Access

Introduction: To develop a more physiologically relevant hip simulator test protocol and study the effect of microstructure on the wear performance of as-cast (AC) and double heat treated (DHT) devices under the new protocol.

Methods: Three pairs of AC and four pairs of DHT 50 mm CoCr metal-on-metal (MoM) devices were tested. The lubricant used was bovine serum. Stop-start motion was implemented between the two sets of kinetics and kinematics that alternated every 100 cycles throughout the test. Condition one: The flexion/extension was 30° and 15° respectively. The internal/external rotation was ±10°. The force was Paul type stance phase loading with a maximum load of 3 kN and a standard ISO swing phase load of 0.3 kN. Condition two: The flexion/extension was ±22°. The internal/external rotation was ±8°. The force was a maximum stance phase load of 2.2 kN and a swing phase load of 0.24 kN at 0.5 Hz frequency. Wear was assessed gravimetrically.

Result: The masking effect of 1 Hz speed and uninter-rupted motion, in providing exaggerated lubrication regime, was exposed under more physiologically relevant test conditions. The AC devices have significantly reduced wear when compared to the DHT devices. It can also be seen that from 0.5 to 2 Mc the divergence in wear has increased.

Conclusion: A more physiologically relevant hip simulator test protocol was successfully developed and implemented, in showing the effect of microstructure on wear as seen in vivo, where high wear of DHT devices has been observed. 295


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 73 - 74
1 Mar 2010
Li R Stewart D vonSchroeder H Li C Schemitsch E
Full Access

Aim of the study: To evaluate the use of a gelfoam sponge as a scaffold material in delivering osteoblast cells transfected with the VEGF gene for fracture repair.

Methods: In vitro: Osteoblasts were cultured from periosteum of rabbit bone and labeled with the visible CMTMR. Commercially available gelfoam with 12 pieces (each 3 × 3 × 3 mm3) was impregnated and cultured with the labelled cells (1×106) in a 12 wells plate for 1, 3 and 7 days. We embedded the gelfoam with labeled cells in an OCT compound enface, and the sections were then examined under a fluorescent microscope. In vivo: Osteoblasts were transfected with VEGF by use of SuperFect (Qiagen Inc) and cultured for 24 hours. The gelfoam pieces were impregnated with the transfected cells (5×106) saline solution for 30 minutes and placed into a segmental bone defect created in the rabbit tibia for 7 (n=3) and 14 (n=3) days. The specimens including the new bone were cut through each site of the segmental defect and embedded in paraffin. The sections were dewaxed and immunostained with mouse anti-human VEGF.

Results: In vitro: CMTMR-labeled cells survived and were detected within gelfoam at different time intervals (days 1, 3 and 7). In vivo: Immunostained VEGF proteins were visualized in the tissues surrounding the residual gel-foam at the fracture site at days 7 and 14 post surgery.

Conclusion: Our results indicate that the labeled/transfected cells are capable of growth in a gelfoam sponge both in vitro and in vivo.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 552 - 552
1 Aug 2008
Kamali A Daniel JT Javid SF Youseffi M Band T Ashton R Hussain A Li C Daniel J McMinn D
Full Access

Introduction: Cementless cup designs in metal-on-metal (MoM) hip resurfacing devices generally depend on a good primary press-fit fixation which stabilises the components in the early post-operative period. Pressfitting the cup into the acetabulum generates non-uniform compressive stresses on the cup and consequently causes non-uniform cup deformation. That in turn may result in equatorial contact, high frictional torque and femoral head seizure. It has been reported that high frictional torque has the potential to generate micromotion between the implant and its surrounding bone and as a result adversely affect the longevity of the implant. The aim of this study was to investigate the effects of cup deformation on friction between the articulating surfaces in MoM bearings with various clearances.

Materials and methods: Six Birmingham Hip Resurfacing (BHR) devices with various clearances (80 to 306 μm) were tested in a hip friction simulator to determine the friction between the bearing surfaces. The components were tested in clotted blood which is the primary lubricant during the early post-operative period. The joints were friction tested initially in their pristine conditions and subsequently the cups were deflected by 25– 35 μm using two points pinching action before further friction tests were carried out.

Results and Discussions: It has been reported that reduced clearance results in reduced friction. However, none of the previous studies have taken cup deflection into consideration nor have they used physiologically relevant lubricant. The results presented in this study show that for the reduced clearance components, friction was significantly increased when the cups were deflected by only 30 μm. However, for the components with higher clearance the friction did not change before and after deflection. It is postulated that the larger clearances can accommodate for the amount of distortion introduced to the cups in this study.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 144 - 144
1 Feb 2004
Ho M Chang J Li C Wang G
Full Access

Introduction: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been reported to suppress bone repair and remodeling in vivo. Our previous studies showed that NSAIDs inhibited osteoblast proliferation and induced cell death in fetal rat osteoblast cultures. However, the NSAIDs effects on the functions of human osteoblasts remain unclear. Newly developed selective cyclo-oxygenase 2 (COX-2) inhibitors, celecoxib and refecoxib, have been reported to have lower risk of gastrointestinal complications than traditional nonsteroidal anti-inflammatory drugs. A recent report showed that refecoxib decreased bone ingrowth in an animal study. However, the effects of COX-2 selective inhibitors on human osteoblasts have rarely been investigated. In this study, the effects of steroid, non-selective, and selective COX-2 inhibitors on proliferation, cell cycle kinetics, and cytotoxicity in cultured human osteoblasts were examined.

Materials and Methods: Indomethacin,ketorolac,piroxicam, and diclofenac (10−5 and 10−4M); dexamethasone (10−7 and 10−6M); Celecoxib and DFU, an analogue of rofecoxib, (10−7–10−4M) were tested for 24 or 48 hr in human osteoblast cultures.

Results: In this study, we found that a 24 hour treatment of COX-2 selective inhibitors, celecoxib and DFU, significantly inhibited proliferation, arrested cell cycle, and had cytotoxicity in cultured human osteoblasts. However, the inhibitory effect on proliferation could be reversed if these agents were withdrawn for 24 hours. Indomethacin, ketorolac, diclofenac, and piroxicam also significantly inhibited proliferation and arrested cell cycle at the G0/G1 phase, but had no cytotoxic effects on human osteoblasts.

Discussion: These results suggest that the COX-2 selective and non-selective NSAIDs may affect osteoblastic functions through different mechanisms.