Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

PAPER 20: CELL-BASED GENE TRANSFER AND TISSUE ENGINEERING IN FRACTURE REPAIR



Abstract

Aim of the study: To evaluate the use of a gelfoam sponge as a scaffold material in delivering osteoblast cells transfected with the VEGF gene for fracture repair.

Methods: In vitro: Osteoblasts were cultured from periosteum of rabbit bone and labeled with the visible CMTMR. Commercially available gelfoam with 12 pieces (each 3 × 3 × 3 mm3) was impregnated and cultured with the labelled cells (1×106) in a 12 wells plate for 1, 3 and 7 days. We embedded the gelfoam with labeled cells in an OCT compound enface, and the sections were then examined under a fluorescent microscope. In vivo: Osteoblasts were transfected with VEGF by use of SuperFect (Qiagen Inc) and cultured for 24 hours. The gelfoam pieces were impregnated with the transfected cells (5×106) saline solution for 30 minutes and placed into a segmental bone defect created in the rabbit tibia for 7 (n=3) and 14 (n=3) days. The specimens including the new bone were cut through each site of the segmental defect and embedded in paraffin. The sections were dewaxed and immunostained with mouse anti-human VEGF.

Results: In vitro: CMTMR-labeled cells survived and were detected within gelfoam at different time intervals (days 1, 3 and 7). In vivo: Immunostained VEGF proteins were visualized in the tissues surrounding the residual gel-foam at the fracture site at days 7 and 14 post surgery.

Conclusion: Our results indicate that the labeled/transfected cells are capable of growth in a gelfoam sponge both in vitro and in vivo.

Correspondence should be addressed to Dr. D. Hak, Email: David.Hak@dhha.org