header advert
Results 21 - 40 of 47
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 90 - 90
1 Apr 2017
Lee G
Full Access

Infection following primary total knee arthroplasty (TKA) is fortunately a relatively uncommon complication with an incidence of approximately 1%. However, because the morbidity and cost of treatment of deep prosthetic TKA infections is so high, effective prevention strategies are key quality improvement initiatives. The cause of post-operative infections are multifactorial and complex but can generally be categorised into 1) host, 2) surgical, and 3) environmental factors. The purpose of this abstract to provide an outline of these factors and their influences on the infection risk following TKA.

Patient factors and optimization of modifiable risk factors have been shown to decrease the risk for infection. While the individual contributions of factors such as body mass index (BMI), diabetes, nutritional status, Charlson Comorbidity Index (CCI), and renal disease are unknown, together, they have been shown to influence infection risk. Additionally, Tayton et al. analyzed 64,566 primary TKAs in the New Zealand Joint Registry and found that male gender and prior knee surgery were also independent risk factors of development of PJI 12 months following TKA. Finally, Crowe and colleagues also identified tobacco use and Staphylococcus aureus colonization as modifiable risk factors for minimizing PJI following primary TKA.

Timely administration of prophylactic antibiotics prior and after surgery has been shown to be the most effective strategy to reduce infection risk. The optimal prophylaxis regimen for all patients is unknown and in certain situations, administration of Vancomycin in additional to a conventional cephalosporin may be beneficial. However, universal administration of Vancomycin has not been shown to decrease the incidence of surgical site infections and could actually increase the risk for renal failure. Conversely, addition of antibiotics to cement during primary TKA has not been shown to reduce long term infection risk. The use of dilute betadine lavage has been shown by some authors to be beneficial. Finally, good surgical technique, proper soft tissue handling, and meticulous wound closure are all critical factors influencing the risk for infectious complications following TKA.

Environmental factors have also been shown to affect infection rates following TKA. While the use of laminar flow and body exhaust suits have not been shown to significantly influence the risk for infection, minimizing operating room traffic has been shown effective in reducing the risk for contamination. Some authors have shown ultraviolet light systems to decrease airborne contaminants.

In summary, factors influencing infection risk following TKA are complex and multifactorial. Patient selection, optimization of modifiable risk factors, appropriate use of antibiotics, and minimization of OR traffic are among the most common strategies to minimizing infection.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 64 - 64
1 Mar 2017
Oh B Cho W Cho H Lee G
Full Access

Purpose

Failure resulting from a recurrent infection in total knee arthroplasty (TKA) is a challenging problem. Knee arthrodesis is one treatment option, however fusion is not always successful, as there is huge bone defect. The authors reports a new arthrodesis technique that uses a bundle of flexible intramedullary rods and an antibiotic-loaded cement spacer.

Methods

There were 13 cases of arthrodesis due to recurrent periprosthetic joint infection, which were performed by the first author (WS Cho) at Asan Medical Center in Seoul from 2005 to 2014. All previous prosthetic components were removed and cement was thoroughly excised using a small osteotome. Two stage operation was done in most of cases. After thorough debridement, antibiotics loaded cement was inserted in first stage, flexible intramedullary rods were inserted retrogradely in the femoral side with the knee in flexion under fluoroscopy guidance. After filling the femoral intramedullary canal, the rods were then driven back securely into the tibial medullary canal. We aimed for as much rod length as possible to maximize stability. After 6 weeks of first stage operation, the rods of the femoral and tibial sides were arranged such that they overlapped and interdigitated to maximize mechanical strength, maintain the limb length and keep the rotational alignment. The interdigitating rod ends were tightly fixed using two (or three) cerclage wires. Antibiotic-loaded cement was filled into the knee joint space so that the cement is fit to the irregular contour of the femur and tibia, which was resulted from the severe bone loss. Postoperatively, patients were allowed to weight bear as tolerated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 117 - 117
1 Feb 2017
Lee G Kim R
Full Access

Introduction

The utilization of ceramic components in Total Hip Arthroplasty has experienced an expanded acceptance by the orthopedic community. This increased acceptance has been largely due to the lower risk of fracture due to the introduction of zirconia toughened alumina ceramics. This extra-high strength ceramic composite has been proven clinically over the past 13 years and found to be much more reliable than previous ceramic materials. The goal is to verify this finding by published registry data as well as clinical outcome.

Methods

Registry data on fractured ceramic components have been compared with the data received from the largest manufacturer of ceramic hip components. Additionally, the clinical outcome of ceramic on ceramic artificial hips has been evaluated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 118 - 118
1 Feb 2017
Oh B Won Y Lee G
Full Access

Post-traumatic avascular necrosis of the femoral head usually occurs after hip dislocation and femoral neck fracture. Recently along the development of hip arthroscopy, early stage of avascular necrosis of the femoral head can be treated rthroscopically. We hereby present two cases of post-traumatic avascular necrosis patients treated with hip arthroscopy.

Case 1

Twenty one year old female patient came to the hospital because of fall from height of 3 floors. Left acetabular fracture, both superior pubic rami fractures and severely displaced left femoral neck fracture were identified at the emergency department (Fig. 1-A). She underwent surgery at the injury day. After the repair of ruptured urinary bladder, internal fixation of the femoral neck was done. Four cannulated screws with washers were inserted for displaced femoral neck fracture, consistent with garden stage IV (Fig. 1-B). Skeletal traction of ipsilateral lower extremity was applied four weeks after the surgery for acetabular fracture. She visited us for painful limitation of motion on left hip at eight months postoperatively. Plain radiograph showed collapse of femoral head and osteophyte formation which were caused by post-traumatic avascular necrosis (Fig. 1-C,D). Femoral head was perforated by a screw. She was planned to remove the screw and resect the osteophyte arthroscopically. On arthroscopic examination, severe synovitis and folded, collapsed femoral cartilage were identified (Fig. 1-E). Screws were removed and osteophyte were also resected (Fig. 1-F). We filled the cavity caused by the screws with allogenic strut graft for structural support. After the surgery, pain was relieved and she came back to her active daily living and for six months, no other complication nor further collapse were identified postoperatively.

Case 2

Fourty year old male patient was admitted to the hospital for fall from height about fifteen feet from the ground. Left femoral neck fracture was identified on the emergency department. Previously he had underwent intramedullary nailing for the femoral shaft fracture about five years ago. Urgent internal fixation with four cannulated screws was done on the day of injury. The fixation was unsatisfactory because previously inserted intramedullary nail hindered the proper trajectory of screws. Furthermore, direction of cephalad interlocking holes of the nail were not consistent with the anteversion of femoral neck, we could not place the screws through the nail. Four months after the index surgery, collapse of femoral head and loosening of screws have occurred. MRI showed the collapse of femoral head and posttraumatic avascular necrosis. Prominent bony beak of femoral neck were identified and he complained difficulty and pain on his hip during abduction. We left two screws for secure fixation and resected the bony beak using arthroscopic burr. After the surgery, he felt free from the pain on abduction of hip.

Discussion

Even though collapse of the femoral head is identified, early intervention by the arthroscopy could minimize pain or delay the progression of arthritic change. Authors think that it might be helpful for the young adult patients in terms of pain relief and potential delay of the total hip arthroplasty.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 132 - 132
1 Feb 2017
MacDonald D Chen A Lee G Klein G Cates H Mont M Rimnac C Kurtz S
Full Access

Introduction

During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. Previous studies have observed that the use of a ceramic head can mitigate the extent of corrosion damage at the taper. Moreover, in vitro testing suggests that corrosion is not a concern in sleeved ceramic heads [1]; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads.

Materials and Methods

Thirty sleeved ceramic heads (Biolox Option: CeramTec) were collected during revision surgery as part of a multi-center retrieval program. The sleeves were used in conjunction with a zirconia-toughened alumina femoral head. The femoral heads and sleeves were implanted between 0.0 and 3.25 years (0.8±0.9, Figure 1). The implants were revised predominantly for instability (n=14), infection (n=7), and loosening (n=5). Fifty percent of the retrievals were implanted during a primary surgery, while 50% had a history of a prior revision surgery. Fretting corrosion was scored using a previously described 4-point, semi-quantitative scoring system proposed by Higgs [2].


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 122 - 122
1 Dec 2016
Lee G
Full Access

Ceramic bearing complications are rare, but can be a catastrophic complication following total hip arthroplasty (THA). Particulate debris from fractured ceramics can cause damage to the hip prosthesis and jeopardise subsequent revision THA. Patients with ceramic fractures can present with sudden onset of pain and dysfunction. Often, the patient will report a noisy hip articulation. Radiographs can range from subtle densities surrounding the hip implant to complete disintegration and loss of sphericity of the femoral head or acetabular liner.

Ceramic component fractures should be treated expeditiously. Revision options for failed ceramic components depend on existing component fixation, position, and type. In order to retain the implants, the components must be well fixed, appropriately positioned, and have tapers that are undamaged and can accept current femoral heads. Additionally, an extensile exposure and complete synovectomy are necessary to remove the sharp ceramic particulate debris. Finally, a ceramic ball head should be used to revise a fractured ceramic THA. Newer, alumina composite ceramic ball heads are harder, reliable, and more scratch resistant compared to metal ball heads. However, when retaining the femoral component, a ceramic ball head with a titanium sleeve should be used to prevent subsequent failures.

In summary, ceramic bearing complications are rare but catastrophic events. A systematic approach to evaluation and management is necessary to ensure a safe return.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 104 - 104
1 Dec 2016
Lee G
Full Access

Revision total knee arthroplasty (TKA) can pose significant challenges. Successful reconstruction requires a systematic approach with the ultimate goal being a well fixed and balanced knee prosthesis. Careful preoperative planning is necessary for safe exposure, component removal, and appropriate management of bone loss during revision knee surgery.

Prior to surgery, the cause of failure must be understood. Revision TKA without a clear diagnosis has been shown to lead to predictable poor results. A careful history and physical examination for both intrinsic and extrinsic causes of knee pain need to be performed. An ESR and C-reactive protein should be obtained in every patient with a painful TKA and in cases of serologic abnormalities, a joint aspiration performed.

The integrity of the collateral ligaments and the degree of anticipated bone loss at the time of revision needs to be established. In cases of severe collateral ligament deficiency, the need for constrained or hinged knee implants should be anticipated. Plain radiographs are needed to evaluate present component position, loosening, and osteolysis. Oblique radiographs and advanced imaging (i.e. CT or MRI) have been shown to more accurately quantify the severity of lysis compared to standard radiographs. This careful assessment can help prepare for the need of special implants, stems, wedges, or augments.

Finally, patient risk stratification and medical co-management can help minimise complications following revision TKA. Optimization of potentially modifiable risk factors such as glycemic control, BMI, and preoperative hemoglobin can reduce perioperative morbidity and complications.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 23 - 23
1 Dec 2016
Lee G
Full Access

While total hip arthroplasty (THA) has been shown successful at relieving pain and improving function in patients with coxarthrosis, wear and instability remain leading causes for revision surgery. Highly crosslinked polyethylene (HXPE) has significantly reduced wear and osteolysis but volumetric wear associated with the use of larger diameter ball heads may be an issue in the long-term. Finally, concerns with femoral taper corrosion have increased the utilization of ceramic ball heads in recent years.

Ceramic on ceramic articulations are optimised for both minimizing implant wear and instability. It is biocompatible, wettable, and possesses the lowest in vitro and in vivo wear rates among all bearing couples. In fact, wear rates are lowest when the ceramic ball head size is maximised. Additionally, modern ceramic on ceramic THA designs have had an excellent clinical track record with low rates of loosening, failure, and no reports of osteolysis in even highly active, young patients.

Concerns with ceramics center around issues related to fracture risk, squeaking, and cost. While the phenomenon of squeaking remains poorly understood, the reliability of ceramic implants have steadily improved with better materials, design, and manufacturing. The fracture risk for modern pure alumina implants and the newer alumina matrix composite ceramics are 1 in 5000 and 1 in 100,000, respectively.

The advantages of ceramic on ceramic THAs will not be realised on every patient and therefore, should be selectively used. However, with expected increases in life expectancy and more young, active patients undergoing THA, ceramic on ceramic THA should be strongly considered in patients under age 60 years.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 58 - 58
1 Nov 2016
Lee G
Full Access

Infection following primary total knee arthroplasty (TKA) is fortunately a relatively uncommon complication with an incidence of approximately 1%. However, because the morbidity and cost of treatment of deep prosthetic TKA infections is so high, effective prevention strategies are key quality improvement initiatives. The cause of post-operative infections are multifactorial and complex but can generally be categorised into 1) host, 2) surgical, and 3) environmental factors. The purpose of this abstract is to provide an outline of these factors and their influences on the infection risk following TKA.

Patient factors and optimization of modifiable risk factors have been shown to decrease the risk for infection. While the individual contributions of factors such as body mass index (BMI), diabetes, nutritional status, Charlson Comorbidity Index (CCI), and renal disease are unknown, together, they have been shown to influence infection risk. Additionally, Tayton et al. analyzed 64,566 primary TKAs in the New Zealand Joint Registry and found that male gender and prior knee surgery were also independent risk factors of development of PJI 12 months following TKA. Finally, Crowe and colleagues also identified tobacco use and Staphylococcus aureus colonization as modifiable risk factors for minimizing PJI following primary TKA.

Timely administration of prophylactic antibiotics prior and after surgery has been shown to be the most effective strategy to reduce infection risk. The optimal prophylaxis regimen for all patients is unknown and in certain situations, administration of Vancomycin in additional to a conventional cephalosporin may be beneficial. However, universal administration of Vancomycin has not been shown to decrease the incidence of surgical site infections and could actually increase the risk for renal failure. Conversely, addition of antibiotics to cement during primary TKA has not been shown to reduce long term infection risk. The use of dilute betadine lavage has been shown by some authors to be beneficial. Finally, good surgical technique, proper soft tissue handling, and meticulous wound closure are all critical factors influencing the risk for infectious complications following TKA.

Environmental factors have also been shown to affect infection rates following TKA. While the use of laminar flow and body exhaust suits have not been shown to significantly influence the risk for infection, minimizing operating room traffic has been shown effective in reducing the risk for contamination. Some authors have shown ultraviolet light systems to decrease airborne contaminants.

In summary, factors influencing infection risk following TKA are complex and multifactorial. Patient selection, optimization of modifiable risk factors, appropriate use of antibiotics, and minimization of OR traffic are among the most common strategies to minimizing infection.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 111 - 111
1 Nov 2016
Lee G
Full Access

Ceramic bearing complications are rare but can cause significant pain and morbidity following total hip arthroplasty (THA). The hard and sharp particulate debris from fractured ceramic components can cause damage to the existing hip prosthesis and jeopardise subsequent revision THA results due to third body wear.

Patients with ceramic fractures can present with sudden onset of pain and dysfunction. Often, the patient will report a noisy hip articulation. Radiographs can range from subtle densities surrounding the hip implant to complete disintegration and loss of sphericity of the femoral head or acetabular liner.

Ceramic component fractures should be treated expeditiously. Revision options for failed ceramic components depend on existing component fixation, position, and locking mechanism and femoral trunnion integrity. In order to retain the implants, the components must be well-fixed, in good position, and have tapers and locking mechanisms that can accept new modular components. Additionally, an extensile exposure and complete synovectomy are necessary to remove the sharp particulate debris. Finally, a new ceramic ball head with a titanium inner sleeve should be used in revisions for fractured ceramics due to their hardness and scratch resistance.

Early results for revision surgery for fractured ceramic components were inconsistent. Allain et al. reported on a series of 105 revisions performed for ceramic head fractures and found that the survivorship at 5 years was only 63%. The authors reported a high reoperation rate and also worse survivorship when the acetabular component was retained, a metal head was used for revisions, age younger than 50 years, and when a complete synovectomy was not performed at the time of revision. More recently, Sharma and colleagues reported on a series of 8 ceramic fractures revised to a metal-on-polyethylene articulation performed with a complete synovectomy. At 10-year follow up, the authors reported on failures; increased wear; or lesser function compared to 6 matched patients undergoing revision using similar implants for other diagnoses. Others have also reported catastrophic failures when revising fractured ceramic components using metal ball heads.

In summary, ceramic bearing complications in THA are rare but catastrophic events. A systematic approach to evaluation and management is necessary to ensure a safe return.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 144 - 144
1 May 2016
Park K Lee G Kim D Rim Y
Full Access

Purpose

There are still some controversies over the routine use of negative suction drainage after primary total hip arthroplasty (THA). In this study we are to know the benefits of new suction drainage management strategy after primary THA.

Materials and methods

From 2010 to 2012, two hundred patients who had unilateral primary THA were randomly allocated into two groups. One group had negative suction drainage immediately after THA (Group 1). In the other group, the suction drainage was inserted but negative pressure was applied more than 12 hours after surgery, in the morning postoperative day one (Group 2). All surgeries were performed by one single hip surgeon using the same technique and postoperative rehabilitation protocol was all same. We checked the amount of blood loss, changes in hemoglobin (Hb), volume of blood transfusion, superficial or deep wound infection and hematoma. Clinical results were evaluated using HHS score.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 10 - 10
1 May 2016
MacDonald D Schachtner J Chen A Cates H Klein G Mont M Kraay M Malkani A Lee G Hamlin B Rimnac C Kurtz S
Full Access

Introduction

Highly crosslinked polyethylene (HXLPE) was clinically introduced approximately a decade and a half ago to reduce polyethylene wear rates and subsequent osteolysis. Clinical and radiographic studies have repeatedly shown increased wear resistance, however concerns of rim oxidation and fatigue fracture remain. Although short to intermediate term retrieval studies of these materials are available, the long-term behavior of these materials remains unclear.

Methods

Between 2000 and 2015, 115 1st generation HXLPE acetabular liners implanted for 5 or more years were collected and analyzed as part of an ongoing, multi-institutional orthopaedic implant retrieval program. There were two material cohorts based on thermal processing (annealed (n=45) and remelted (n=70)). Each cohort was stratified into two more cohorts based on implantation time (5 – 10 years and >10 years). For annealed components, the intermediate-term liners (n=30) were implanted on average (±SD) for 7.3 ± 1.7 years while the long-term liners (n=15) were implanted for 11.3 ± 1.8 years. For remelted components, the intermediate-term liners (n=59) were implanted on average (±SD) for 7.2 ± 1.3 years while the long-term liners (n=11) were implanted for 11.3 ± 1.2 years. For each cohort, the predominant revision reasons were loosening, instability, and infection (Figure 1). Short-term liners (in-vivo <5ys) from previous studies were analyzed using the same protocol for use as a reference.

For oxidation analysis, thin slices (∼200 μm) were taken from the superior/inferior axis and subsequently boiled in heptane for 6 hours to remove absorbed lipids that may interfere with the oxidation analysis. 3mm line profiles (in 100μm increments) were taken perpendicular to the surface at each region of interest. Oxidation indices were calculated according to ASTM 2102. Penetration was measured directly using a calibrated micrometer (accuracy=0.001mm).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 117 - 117
1 May 2016
Park K Kim D Lee G Rim Y
Full Access

Introduction

Total hip arthroplasty (THA) is the most common surgery performed for complications of bipolar arthroplasty. The present study evaluated the functional results and complications associated with this surgery.

Patients and Methods

Forty eight hips (48 patients) who had conversion of bipolar arthroplasty to THA between 1998 June and 2013 June, and who were followed-up for more than one year were evaluated. Twenty one hips had conversion surgery to THA using a Fitmore cup with metal-on-metal articulation (28 mm head). Six hips had surgery using the SecurFit cup and three hips, using the Lima LTO cup with ceramic-on-ceramic articulation (28 mm or 32 mm head). Eighteen hips had surgery using a large head metal-on-metal bearing: –MMC (seven hips), ACCIS (six hips) and Magnum (five hips). The average time of follow-up duration was 3.9 years (range, 1.0–11.3). There were 22 men and 26 women between the ages of 28 and 80 years (average, 68.9 years) at the time of conversion surgery. Conversion arthroplasty was performed for acetabular erosion without femoral stem loosening in 19 hips, acetabular cartilage erosion with femoral stem loosening in 13 hips, periprosthetic fracture in 12 hips, and recurrent dislocation in four hips. Results were evaluated using Harris hip score (HHS) and Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) score. The radiographs were analyzed for evidence of acetabular and femoral osteolysis or loosening. The complications were evaluated.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 129 - 129
1 May 2016
Kurtz S Arnholt C MacDonald D Higgs G Underwood R Chen A Klein G Hamlin B Lee G Mont M Cates H Malkani A Kraay M Rimnac C
Full Access

Introduction

Previous studies of retrieved CoCr alloy femoral heads have identified imprinting of the stem taper surface features onto the interior head bore, leading researchers to hypothesize that stem taper microgrooves may influence taper corrosion. However, little is known about the role of stem taper surface morphology on the magnitude of in vivo corrosion damage. We designed a matched cohort retrieval study to examine this issue.

Methods

From a multi-institutional retrieval collection of over 3,000 THAs, 120 femoral head-stem pairs were analyzed for evidence of fretting and corrosion using a visual scoring technique based on the severity and extent of fretting and corrosion damage observed at the taper. A matched cohort design was used in which 60 CoCr head-stem pairs with a smooth stem taper were matched with 60 CoCr head-stem pairs having a micro-grooved surface, based on implantation time, flexural rigidity, apparent length of taper engagement, and head size. This study was adequately powered to detect a difference of 0.5 in corrosion scores between the two cohorts, with a power of 82% and 95% confidence. Both cohorts included CoCr and Ti-6-4 alloy femoral stems. A high precision roundness machine (Talyrond 585, Taylor Hobson, UK) was used to measure surface morphology and categorize the stem tapers into smooth vs. micro-grooved categories. Fretting and corrosion damage at the head/neck junction was characterized using a modified semi-quantitative adapted from the Goldberg method by three independent observers. This method separated corrosion damage into four visually determined categories: minimal, mild, moderate and severe damage.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 4 - 4
1 Jan 2016
MacDonald D Clarkin-Wright G Parvizi J Lee G Klein G Rimnac C Gilbert J Kurtz S
Full Access

Introduction

In THA, fretting corrosion at the head-stem taper junction has emerged as a clinical concern that may result in adverse local tissue reactions, even in patients with a metal-on-polyethylene bearing [1]. Taper junctions that employ a ceramic head have demonstrated reduced corrosion at the interface [2]. However, during revision surgery with a well-fixed stem, a titanium sleeve is used in conjunction with a ceramic head to ensure proper fit of the head onto the stem and better stress distribution. In vitro testing has suggested that corrosion is not a concern in sleeved ceramic heads [3]; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads.

Materials and Methods

Between 2001 and 2014, 35 sleeved ceramic heads were collected during revision surgery as part of a multi-center retrieval program. The sleeves were all fabricated from titanium alloy and manufactured by 4 companies (CeramTec (n=14), Smith & Nephew (Richards, n=11), Stryker (n=5), and Zimmer (n=5)). The femoral heads were made from 3 ceramics (Alumina (n=7), Zirconia (n=11), and Zirconia-toughened Alumina (n=17)). Sleeve dimensions (length and thickness) were measured using calibrated calipers. Fretting corrosion of the sleeves and available associated stems was scored using a 4-point, semi-quantitative scoring system [4], with 1 being little-to-no damage, and 4 corresponded to severe fretting corrosion. Five sleeves could not be extracted; thus the external surface was not scored.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 132 - 132
1 Jan 2016
MacDonald D Kurtz SM Kocagoz S Hanzlik J Underwood RJ Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Day J Rimnac C
Full Access

Introduction

Recent implant design trends have renewed concerns regarding metal wear debris release from modular connections in THA. Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Comparatively little is known about head-neck taper corrosion with ceramic femoral heads or about how taper angle clearance influences taper corrosion. This study addressed the following research questions: 1) Could ceramic heads mitigate electrochemical processes of taper corrosion compared to CoCr heads? 2) Which factors influence stem taper corrosion with ceramic heads? 3) What is the influence of taper angle clearance on taper corrosion in THA?

Methods

100 femoral head-stem pairs were analyzed for evidence of fretting and corrosion. A matched cohort design was employed in which 50 ceramic head-stem pairs were matched with 50 CoCr head-stem pairs based on implantation time, lateral offset, stem design and flexural rigidity. Fretting corrosion was assessed using a semi-quantitative scoring scale where a score of 1 was given for little to no damage and a score of 4 was given for severe fretting corrosion. The head and trunnion taper angles were measured using a roundness machine (Talyrond 585, Taylor Hobson, UK). Taper angle clearance is defined as the difference between the head and trunnion taper angles.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 55 - 55
1 Nov 2015
Lee G
Full Access

Introduction

Proposed advantages of patient-specific instrumentation in total knee arthroplasty (TKA) include enhanced accuracy for component positioning, reduced operative time, and increased OR efficiency leading to potential cost savings. However, various studies with relatively small sample sizes have evaluated the impact of these custom cutting guides and were unable to detect any significant differences compared to conventional surgical technique. Therefore, the purpose of this study is to improve the sensitivity of investigation through meta-analysis and compare patient-specific versus standard TKA instrumentation with regard to: (1) coronal alignment, (2) sagittal alignment, (3) operative time, (4) blood loss, (5) transfusion requirement, and (6) peri-operative costs.

Methods

A systematic review of the peer-reviewed literature indexed on Medline and/or Embase was performed in search of Level I, II, or III studies comparing the results of patient-specific versus standard TKA instrumentation. Nine studies remained following the screening process. The data published in these studies were extracted and aggregated for the purpose of comparing the two treatment groups with regard to coronal alignment, sagittal alignment, operative time, blood loss, transfusion requirement, and peri-operative costs. Using previously published data, it was determined that a sample size of 80 patients per group would have sufficient power (0.80) to detect a significant difference (α = 0.05) in all primary outcomes.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 118 - 118
1 Nov 2015
Lee G
Full Access

Ceramic bearing complications are a rare, but can be catastrophic, complication following total hip arthroplasty (THA). Particulate debris from these failed bearings can cause damage the underlying femoral and acetabular components and/or cause further damage to future hip implants. Failure to recognise and appropriately manage these events can lead to significant morbidity.

Ceramic component fractures should be treated expeditiously. Delays in diagnosis and treatment can result in destructive damage of the underlying hip prosthesis caused by sharp, abrasive wear of ceramic particles. Patients with ceramic fractures present with sudden onset of pain and dysfunction. Often, the patient will report a noisy hip articulation. Radiographs can range from subtle densities surrounding the hip implant to complete disintegration and loss of sphericity of the femoral head or acetabular liner. As with any other causes of failed joint arthroplasty, a systematic evaluation and workup for failure is mandatory prior to revision surgery.

Revision options for failed ceramic components depend on component fixation, position, and type. In order to retain existing implants, the components must be well fixed, appropriately positioned, and have tapers that are undamaged and can accept current femoral heads. If these conditions are not met, then revision of components should be performed to optimise outcomes. Additionally, an extensile exposure is necessary in order to perform a complete synovectomy in order to remove as much of the ceramic particulate debris. Finally, the question of optimal bearing choice following component revision remains an area of debate. Newer, alumina composite ceramic ball heads are harder and more scratch resistant that metal ball heads and therefore preferred in my personal practice.

In summary, ceramic bearing complications are rare but catastrophic events. A systematic approach to evaluation and management is necessary to ensure a safe return.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 131 - 131
1 Dec 2013
Murphy J Courtney P Lee G
Full Access

Proper restoration of posterior condylar offset during TKA has been shown to be important to maximize range of motion and minimize flexion instability. However, there is little information as to the importance of restoration of mid-sagittal femoral geometry. There is controversy as to whether a TKA prosthesis should have a single radius or multiple radii of curvature. The purpose of this study is to evaluate the effectiveness of a multi-radius femoral component at restoring mid sagittal femoral offset.

A consecutive series of 100 TKAs with digital preoperative and postoperative radiographs and standardized radiographic markers were analyzed. There were 71 female and 29 male knees with mean age of 59 years. All TKAs were performed by a single surgeon using a multi-radius femoral component design. The distal femoral resection was set to resect 10 mm from the distal femoral condyle and a posterior referencing system was used to size the femoral component. Using radiographic perfect lateral projections of the knees, a line was drawn along the posterior femoral shaft and another parallel line down the anterior femoral shaft. A 3rd line was then drawn parallel to the posterior shaft at the furthest point posterior on the condyle. A 4th line was drawn parallel to the anterior shaft at the furthest point anterior on the femur. 90 degree angles were constructed to create a grid in the anterior and posterior directions, similar to a previously reported technique. Finally, 45 degree angle lines were created in the grid to assess mid flexion dimensions [Fig-1 and 2]. The percent change in posterior condylar offset (PCO), anterior femoral offset (AFO), mid femoral anterior offset (MAFO) and mid femoral posterior offset (MFPO) were calculated.

The mean reproduction of the mid-anterior femoral offset and mid-posterior femoral offset were 101.1% [range 56.5%–167.5%] and 96.8% [range 54.9%–149.0%] of preoperative measurements respectively. The average restoration of posterior offset and anterior offset were 92.8% [range 49.0%–129.8%] and 115.3% of preoperative measurements [range 35.7%–400.0%] respectively. When the posterior condylar offset was restored to within 10% of the native anatomy, the MPFO restoration more closely resembled normal anatomy (103.0% vs. 93.9%, p = 0.005). When the postoperative posterior condylar offset was decreased greater than 20%, both the MAFO (90.1% vs. 104.5%, p = 0.004) and MPFO (78.5% vs. 102.9%, p < 0.001) decreased compared to the native knee. There was no relationship between restoration of the PCO and the MAFO correction (104.6% vs. 99.4%, p = 0.213). Finally, there was no correlation between restoration of anterior femoral offset within 10% of normal and the restoration of mid sagittal femoral offset; 98.0% vs 102.0% for MAFO (p = 0.320) and 98.7% vs 96.3% for MPFO (p = 0.569).

A modern multi-radius condylar knee design is capable of reproducing the mid-sagittal geometry of the preoperative knee. However, the restoration of mid sagittal offset is largely dependent on the restoration of the posterior condylar offset. Intraoperative adjustments in anterior and posterior femoral resections can have significant impact in the ability of the implant to reproduce mid-sagittal femoral anatomy.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 68 - 68
1 Dec 2013
Gray C Wu C Baldwin K Lee G
Full Access

Introduction

Infection following total knee arthroplasty (TKA) is a catastrophic complication. In the United States, for chronic, first time infected TKA, the gold standard remains a 2-stage reimplantation (2SR) procedure, with reported success rates approaching 90%. However, there is a lack of consensus on the treatment of subsequent reinfections.

Question

The purpose of this study was to use published data on infected TKA to develop a decision tree analysis to determine the treatment method likely to yield the highest quality of life for a patient following a failed 2SR.