header advert
Results 21 - 40 of 60
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 23 - 23
4 Apr 2023
Stoffel K Zderic I Pastor T Woodburn W Castle R Penman J Saura-Sanchez E Gueorguiev B Sommer C
Full Access

Treatment of simple and complex patella fractures represents a challenging clinical problem. Controversy exists regarding the most appropriate fixation method. Tension band wiring, aiming to convert the pulling forces on the anterior aspect of the patella into compression forces across the fracture site, is the standard of care, however, it is associated with high complication rates. Recently, anterior variable-angle locking plates have been developed for treatment of simple and comminuted patella fractures. The aim of this study was to investigate the biomechanical performance of the novel anterior variable-angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures.

Sixteen pairs of human cadaveric knees were used to simulate either two-part transverse simple AO/OTA 34-C1 or five-part complex AO/OTA 34-C3 patella fractures by means of osteotomies, with each fracture model created in eight pairs. The complex fracture pattern was characterized with a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or an anterior variable-angle locking core plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or an anterior variable-angle locking three-hole plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range from 90° flexion to full knee extension. Interfragmentary movements were captured by motion tracking.

For both fracture types, the articular displacements, measured between the proximal and distal fragments at the central aspect of the patella between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the anterior variable-angle locked plating compared with the tension band wiring, p < 0.01

From a biomechanical perspective, anterior locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 124 - 124
4 Apr 2023
van Knegsel K Hsu C Huang K Benca E Ganse B Pastor T Gueorguiev B Varga P Knobe M
Full Access

The lateral wall thickness (LWT) in trochanteric femoral fractures is a known predictive factor for postoperative fracture stability. Currently, the AO/OTA classification uses a patient non-specific measure to assess the absolute LWT (aLWT) and distinguish stable A1.3 from unstable A2.1 fractures based on a threshold of 20.5 mm. This approach potentially results in interpatient deviations due to different bone morphologies and consequently variations in fracture stability. Therefore, the aim of this study was to explore whether a patient-specific measure for assessment of the relative LWT (rLWT) results in a more precise threshold for prediction of unstable fractures.

Part 1 of the study evaluated 146 pelvic radiographs to assess left-right symmetry with regard to caput-collum-angle (CCD) and total trochanteric thickness (TTT), and used the results to establish the rLWT measurement technique. Part 2 reevaluated 202 patients from a previous study cohort to analyze their rLWT versus aLWT for optimization purposes.

Findings in Part 1 demonstrated a bilateral symmetry of the femur regarding both CCD and TTT (p ≥ 0.827) allowing to mirror bone's morphology and geometry from the contralateral intact to the fractured femur. Outcomes in Part 2 resulted in an increased accuracy for the new determined rLWT threshold (50.5%) versus the standard 20.5 mm aLWT threshold, with sensitivity of 83.7% versus 82.7% and specificity 81.3% versus 77.8%, respectively.

The novel patient-specific rLWT measure can be based on the contralateral femur anatomy and is a more accurate predictor of a secondary lateral wall fracture in comparison to the conventional aLWT. This study established the threshold of 50.5% rLWT as a reference value for prediction of fracture stability and selection of an appropriate implant for fixation of trochanteric femoral fractures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 37 - 37
4 Apr 2023
Pastor T Zderic I van Knegsel K Richards G Gueorguiev B Knobe M
Full Access

Proximal humeral shaft fractures are commonly treated with long straight plates or intramedullary nails. Helical plates might overcome the downsides of these techniques as they are able to avoid the radial nerve distally. The aim of this study was to investigate in an artificial bone model: (1) the biomechanical competence of different plate designs and (2) to compare them against the alternative treatment option of intramedullary nails.

Twenty-four artificial humeri were assigned in 4 groups and instrumented as follows: group1 (straight 10-hole-PHILOS), group2 (MULTILOCK-nail), group3 (45°-helical-PHILOS) and group4 (90°-helical-PHILOS). An unstable proximal humeral shaft fracture was simulated. Specimens were tested under quasi-static loading in axial compression, internal/external rotation and bending in 4 directions monitored by optical motion tracking.

Axial displacement (mm) was significantly lower in group2 (0.1±0.1) compared to all other groups (1: 3.7±0.6; 3: 3.8±0.8; 4: 3.5±0.4), p<0.001. Varus stiffness in group2 (0.8±0.1) was significantly higher compared to groups1+3, p≤0.013 (1: 0.7±0.1; 3: 0.7±0.1; 4: 0.8±0.1). Varus bending (°) was significantly lower in group2 compared to all other groups (p<0.001) and group4 to group1, p=0.022. Flexion stiffness in group1 was significantly higher compared to groups2+4 (p≤0,03) and group4 to group1, p≤0,029 (1: 0.8±0.1; 2: 0.7±0.1; 3: 0.7±0.1; 4: 0.6±0.1). Flexion bending (°) in group4 was higher compared to all other groups (p≤0.024) and lower in group2 compared to groups1+4, p≤0.024. Torsional stiffness remained non significantly different, p≥0.086. Torsional deformation in group2 was significantly higher compared to all other groups, p≤0.017. Shear displacement remained non significantly different, p≥0.112.

From a biomechanical perspective, helical plating with 45° and 90° may be considered as a valid alternative fixation technique to standard straight plating of proximal third humeral fractures. Intramedullary nails demonstrated higher axial and bending stiffness as well as lower fracture gap movements during axial loading compared to all plate designs. However, despite similar torsional stiffness they were associated with higher torsional movements during internal/external rotation as compared to all investigated plate designs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 87 - 87
4 Apr 2023
Gehweiler D Pastor T Gueorguiev B Jaeger M Lambert S
Full Access

The periclavicular space is a conduit for the brachial plexus and subclavian-axillary vascular system. Changes in its shape/form generated by alteration in the anatomy of its bounding structures, e.g. clavicle malunion, cause distortion of the containing structures, particularly during arm motion, leading to syndromes of thoracic outlet stenosis etc., or alterations of scapular posture with potential reduction in shoulder function.

Aim of this study was developing an in vitro methodology for systematic and repeatable measurements of the clinically poorly characterized periclavicular space during arm motion using CT-imaging and computer-aided 3D-methodologies.

A radiolucent frame, mountable to the CT-table, was constructed to fix an upper torso in an upright position with the shoulder joint lying in the isocentre. The centrally osteotomized humerus is fixed to a semi-circular bracket mounted centrally at the end of the frame. All arm movements (ante-/retroversion, abduction/elevation, in-/external rotation) can be set and scanned in a defined and reproducible manner. Clavicle fractures healed in malposition can be simulated by osteotomy and fixation using a titanium/carbon external fixator.

During image processing the first rib served as fixed reference in space. Clavicle, scapula and humerus were registered, segmented, and triangulated. The different positions were displayed as superimposed surface meshes and measurements performed automatically. Initial results of an intact shoulder girdle demonstrated that different arm positions including ante-/retroversion and abduction/elevation resulted solely in a transverse movement of the clavicle along/parallel to the first rib maintaining the periclavicular space.

A radiolucent frame enabling systematic and reproducible CT scanning of upper torsos in various arm movements was developed and utilized to characterize the effect on the 3D volume of the periclavicular space. Initial results demonstrated exclusively transverse movement of the clavicle along/parallel to the first rib maintaining the periclavicular space during arm positions within a physiological range of motion.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 42 - 42
4 Apr 2023
Benca E van Knegsel K Zderic I Caspar J Strassl A Hirtler L Fuchssteiner C Gueorguiev B Windhager R Widhalm H Varga P
Full Access

Screw fixation is an established method for anterior cruciate ligament (ACL) reconstruction, although with a high rate of implant-related complications. An allograft system for implant fixation in ACL reconstruction, the Shark Screw ACL (surgebright GmbH) could overcome some of the shortcomings of bioabsorbable screws, such as foreign body reaction, need for implant removal and imaging artefacts. However, it needs to provide sufficient mechanical stability. Therefore, the aim of this study was to investigate the biomechanical stability, especially graft slippage, of the novel allograft system versus a conventional bioabsorbable interference screw (BioComposite Interference Screw; Arthrex Inc.) for tibial implant fixation in ACL reconstruction.

Twenty-four paired human proximal tibiae (3 female, 9 male, 72.7 ± 5.6 years) underwent ACL reconstruction. The quadrupled semitendinosus and gracilis tendon graft were fixed in one specimen of each pair using the allograft fixation system Shak Screw ACL and the contralateral one using an interference screw. All specimens were cyclically loaded at 1 Hz with peak load levels monotonically increased from 50 N at a rate of 0.1 N/cycle until catastrophic failure. Relative movements of the graft versus the tibia were captured with a stereographic optical motion tracking system (Aramis SRX; GOM GmbH).

The two fixation methods did not demonstrate any statistical difference in ultimate load at graft slippage (p = 0.24) or estimated survival at slippage (p = 0.06). Both, the ultimate load and estimated survival until failure were higher in the interference screw (p = 0.04, and p = 0.018, respectively). Graft displacement at ultimate load reached values of up to 7.2 mm (interference screw) and 11.3 mm (Shark Screw ACL).

The allograft screw for implant fixation in ACL reconstruction showed similar behavior in terms of graft slippage compared to the conventional metal interference screw but underperformed in terms of ultimate load. However, the ultimate load may not be considered a direct indicator of clinical failure.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 22 - 22
4 Apr 2023
Souleiman F Zderic I Pastor T Gehweiler D Gueorguiev B Galie J Kent T Tomlinson M Schepers T Swords M
Full Access

The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in full progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries.

Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV, and supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond/joint surface. Following, all specimens were: (1) biomechanically tested over 5000 cycles under combined 1400 N axial and ±15° torsional loading; (2) rescanned. Clear space (diastasis), anterior tibiofibular distance, talar dome angle and fibular shortening were measured radiologically from CT scans. Anteroposterior, axial, mediolateral and torsional movements at the distal tibiofibular joint level were evaluated biomechanically via motion tracking.

In each group clear space increased significantly after injury (p ≤ 0.004) and became significantly smaller in reconstructed compared with both pre-injured and injured states (p ≤ 0.041). In addition, after reconstruction it was significantly smaller in Group 1 compared to Group 2 (p < 0.001). Anteroposterior and axial movements were significantly smaller in Group 1 compared with Group 2 (p < 0.001). No further significant differences were detected between the groups (p ≥ 0.113).

Conclusions

Although both implant systems demonstrate ability for stabilization of unstable syndesmotic injuries, the screw-suture reconstruction provides better anteroposterior translation and axial stability of the tibiofibular joint and maintains it over time under dynamic loading. Therefore, it could be considered as a valid option for treatment of syndesmotic disruptions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 97 - 97
4 Apr 2023
van Knegsel K Zderic I Kastner P Varga P Gueorguiev B Knobe M Pastor T
Full Access

Recently, a new suture was designed to minimize laxity in order to preserve consistent tissue approximation while improving footprint compression after tendon repair. The aims of this study were: (1) to compare the biomechanical competence of two different high strength sutures in terms of slippage and failure load, (2) to investigate the influence of both knots number and different media (air, saline and fat) on the holding capacity of the knots.

Alternating surgical knots of two different high-strength sutures (group1: FibreWire; group2: DynaCord; n = 105) were tied on two roller bearings with 50N tightening force. Biomechanical testing was performed in each medium applying ramped monotonic tension to failure defined in terms of either knot slippage or suture rupture. For each group and medium, seven specimens with either 3, 4, 5, 6, or 7 knots each were tested, evaluating their knot slippage and ultimate load to failure. The minimum number of knots preventing slippage failure and thus resulting in suture rupture was determined in each group and medium, and taken as a criterium for better performance when comparing the groups.

In each group and medium failure occurred via suture rupture in all specimens for the following minimum knot numbers: group1: air – 7, saline – 7, fat – 7; group2: air – 6; saline – 4; fat – 5. The direct comparison between the groups when using 7 knots demonstrated significantly larger slippage in group1 (6.5 ± 2.2 mm) versus group2 (3.5 ± 0.4 mm) in saline (p < 0.01) but not in the other media (p ≥0.52). Ultimate load was comparable between the two groups for all three media (p ≥ 0.06).

The lower number of required knots providing sufficient repair stability, smaller slippage levels and identical suture strength, combined with the known laxity alleviation effect demonstrate advantages of DynaCord versus FibreWire.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 96 - 96
4 Apr 2023
Pastor T Kastner P Souleiman F Gehweiler D Link B Beeres F Babst R Gueorguiev B Knobe M
Full Access

Helical plates are preferably used for proximal humeral shaft fracture fixation and potentially avoid radial nerve irritation as compared to straight plates. Aims:(1) to investigate the safety of applying different long plate designs (straight, 45°-, 90°-helical and ALPS) in MIPO-technique to the humerus. (2) to assess and compare their distances to adjacent anatomical structures at risk.

MIPO was performed in 16 human cadaveric humeri using either a straight plate (group1), a 45°-helical (group2), a 90°-helical (group3) or an ALPS (group4). Using CT-angiography, distances between brachial arteries and plates were evaluated. Following, all specimens were dissected, and distances to the axillary, radial and musculocutaneous nerve were evaluated.

None of the specimens demonstrated injuries of the anatomical structures at risk after MIPO with all investigated plate designs. Closest overall distance (mm(range)) between each plate and the radial nerve was 1(1-3) in group1, 7(2-11) in group2, 14(7-25) in group3 and 6(3-8) in group4. It was significantly longer in group3 and significantly shorter in group1 as compared to all other groups, p<0.001. Closest overall distance (mm(range)) between each plate and the musculocutaneous nerve was 16(8-28) in group1, 11(7-18) in group2, 3(2-4) in group3 and 6(3-8) in group4. It was significantly longer in group1 and significantly shorter in group3 as compared to all other groups, p<0.001. Closest overall distance (mm(range)) between each plate and the brachial artery was 21(18-23) in group1, 7(6-7) in group2, 4(3-5) in group3 and 7(6-7) in group4. It was significantly longer in group1 and significantly shorter in group3 as compared to all other groups, p<0.021.

MIPO with 45°- and 90°-helical plates as well as ALPS is safely feasible and showed a significant greater distance to the radial nerve compared to straight plates. However, distances remain low, and attention must be paid to the musculocutaneous nerve and the brachial artery when MIPO is used with ALPS, 45°- and 90°-helical implants. Anterior parts of the deltoid insertion will be detached using 90°-helical and ALPS implants in MIPO-technique.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 36 - 36
4 Apr 2023
Pastor T Zderic I van Knegsel K Link B Beeres F Migliorini F Babst R Nebelung S Ganse B Schöneberg C Gueorguiev B Knobe M
Full Access

Proximal humeral shaft fractures are commonly treated with long straight locking plates endangering the radial nerve distally. The aim of this study was to investigate the biomechanical competence in a human cadaveric bone model of 90°-helical PHILOS plates versus conventional straight PHILOS plates in proximal third comminuted humeral shaft fractures.

Eight pairs of humeral cadaveric humeri were instrumented using either a long 90°-helical plate (group1) or a straight long PHILOS plate (group2). An unstable proximal humeral shaft fracture was simulated by means of an osteotomy maintaining a gap of 5cm. All specimens were tested under quasi-static loading in axial compression, internal and external rotation as well as bending in 4 directions. Subsequently, progressively increasing internal rotational loading until failure was applied and interfragmentary movements were monitored by means of optical motion tracking.

Flexion/extension deformation (°) in group1 was (2.00±1.77) and (0.88±1.12) in group2, p=0.003. Varus/valgus deformation (°) was (6.14±1.58) in group1 and (6.16±0.73) in group2, p=0.976. Shear (mm) and displacement (°) under torsional load were (1.40±0.63 and 8.96±0.46) in group1 and (1.12±0.61 and 9.02±0.48) in group2, p≥0.390. However, during cyclic testing shear and torsional displacements and torsion were both significantly higher in group 1, p≤0.038. Cycles to catastrophic failure were (9960±1967) in group1 and (9234±1566) in group2, p=0.24.

Although 90°-helical plating was associated with improved resistance against varus/valgus deformation, it demonstrated lower resistance to flexion/extension and internal rotation as well as higher flexion/extension, torsional and shear movements compared to straight plates. From a biomechanical perspective, 90°-helical plates performed inferior compared to straight plates and alternative helical plate designs with lower twist should be investigated in future paired cadaveric studies.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 88 - 88
1 Nov 2021
Pastor T Zderic I Gehweiler D Richards RG Knobe M Gueorguiev B
Full Access

Introduction and Objective

Trochanteric fractures are associated with increasing incidence and represent serious adverse effect of osteoporosis. Their cephalomedullary nailing in poor bone stock can be challenging and associated with insufficient implant fixation in the femoral head. Despite ongoing implant improvements, the rate of mechanical complications in the treatment of unstable trochanteric fractures is high. Recently, two novel concepts for nailing with use of a helical blade – with or without bone cement augmentation – or an interlocking screw have demonstrated advantages as compared with single screw systems regarding rotational stability and cut-out resistance. However, these two concepts have not been subjected to direct biomechanical comparison so far. The aims of this study were to investigate in a human cadaveric model with low bone density (1) the biomechanical competence of cephalomedullary nailing with use of a helical blade versus an interlocking screw, and (2) the effect of cement augmentation on the fixation strength of the helical blade.

Materials and Methods

Twelve osteoporotic and osteopenic femoral pairs were assigned for pairwise implantation using either short TFN-ADVANCED Proximal Femoral Nailing System (TFNA) with a helical blade head element, offering the option for cement augmentation, or short TRIGEN INTERTAN Intertrochanteric Antegrade Nail (InterTAN) with an interlocking screw. Six osteoporotic femora, implanted with TFNA, were augmented with 3 ml cement. Four study groups were created – group 1 (TFNA) paired with group 2 (InterTAN), and group 3 (TFNA augmented) paired with group 4 (InterTAN). An unstable pertrochanteric OTA/AO 31-A2.2 fracture was simulated. All specimens were biomechanically tested until failure under progressively increasing cyclic loading featuring physiologic loading trajectory, with monitoring via motion tracking.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 20 - 20
1 Nov 2021
Gueorguiev B
Full Access

Nonunions occur in situations with interrupted fracture healing process and indicate conditions where the fracture has no potential to heal without further intervention. Per definition, no healing is detected nine months post operation and there is no visible progress of healing over the last three months. The classification of nonunions as hypertrophic, oligotrophic, atrophic and pseudoarthosis, as well as aseptic or septic, identifies mechanical and biological requirements for fracture healing that have not been met. The overall treatment strategy comprises identification and elimination of the problems. However, current clinical methods to determine the state of healing are based on highly subjective radiographic evaluation or clinical examination.

A data collection telemetric system for objective continuous measurement of the load carried by a bridging smart implant was developed to assess the mechanical stability and monitor bone healing in complicated fracture situations. The first results from a clinical trial show that the system is capable to offer early warning of nonunions or poor fracture healing.

Nonunions are often multifactorial in nature and not just related to a biomechanical problem. Their successful treatment requires consideration of both biological and mechanical aspects. Disturbed vascularity and stability are the most important factors. Infection could be another complicating factor resulting in unpredictable long-time treatment. New technologies for monitoring of fracture healing in addition to radiographic evaluation and clinical examination seem to be promising for early detection of nonunions.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 69 - 69
1 Nov 2021
Pastor T Zderic I Richards G Gueorguiev B Knobe M
Full Access

Introduction and Objective

Distal femoral fractures are commonly treated with a straight plate fixed to the lateral aspects of both proximal and distal fragments. However, the lateral approach may not always be desirable due to persisting soft-tissue or additional vascular injury necessitating a medial approach. These problems may be overcome by pre-contouring the plate in helically shaped fashion, allowing its distal part to be fixed to the medial aspect of the femoral condyle. The objective of this study was to investigate the biomechanical competence of medial femoral helical plating versus conventional straight lateral plating in an artificial distal femoral fracture model.

Materials and Methods

Twelve left artificial femora were instrumented with a 15-hole Locking Compression Plate – Distal Femur (LCP-DF) plate, using either conventional lateral plating technique with the plate left non-contoured, or the medial helical plating technique by pre-contouring the plate to a 180° helical shape and fixing its distal end to the medial femoral condyle (n=6). An unstable extraarticular distal femoral fracture was subsequently simulated by means of an osteotomy gap. All specimens were tested under quasi-static and progressively increasing cyclic axial und torsional loading until failure. Interfragmentary movements were monitored by means of optical motion tracking.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 24 - 24
1 Nov 2021
Gueorguiev B Zderic I Pastor T Gehweiler D Richards G Knobe M
Full Access

Introduction and Objective

Plating of geriatric distal femoral fractures with Locking Compression Plate Distal Femur (LCP–DF) often requires augmentation with a supplemental medial plate to achieve sufficient stability allowing early mobilization. However, medial vital structures may be impaired by supplemental medial plating using a straight plate. Therefore, a helically shaped medial plate may be used to avoid damage of these structures. Aim of the current study was to investigate the biomechanical competence of augmented LCP–DF plating using a supplemental straight versus helically shaped medial plate.

Materials and Methods

Ten pairs of human cadaveric femora with poor bone quality were assigned pairwise for instrumentation using a lateral anatomical 15-hole LCP–DF combined with a medial 14-hole LCP, the latter being either straight or manually pre-contoured to a 90-degree helical shape. An unstable distal femoral fracture AO/OTA 33–A3 was simulated by means of osteotomies. All specimens were biomechanically tested under non-destructive quasi-static and destructive progressively increasing combined cyclic axial and torsional loading in internal rotation, with monitoring by means of optical motion tracking.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 125 - 125
1 Nov 2021
Sánchez G Cina A Giorgi P Schiro G Gueorguiev B Alini M Varga P Galbusera F Gallazzi E
Full Access

Introduction and Objective

Up to 30% of thoracolumbar (TL) fractures are missed in the emergency room. Failure to identify these fractures can result in neurological injuries up to 51% of the casesthis article aimed to clarify the incidence and risk factors of traumatic fractures in China. The China National Fracture Study (CNFS. Obtaining sagittal and anteroposterior radiographs of the TL spine are the first diagnostic step when suspecting a traumatic injury. In most cases, CT and/or MRI are needed to confirm the diagnosis. These are time and resource consuming. Thus, reliably detecting vertebral fractures in simple radiographic projections would have a significant impact. We aim to develop and validate a deep learning tool capable of detecting TL fractures on lateral radiographs of the spine. The clinical implementation of this tool is anticipated to reduce the rate of missed vertebral fractures in emergency rooms.

Materials and Methods

We collected sagittal radiographs, CT and MRI scans of the TL spine of 362 patients exhibiting traumatic vertebral fractures. Cases were excluded when CT and/or MRI where not available. The reference standard was set by an expert group of three spine surgeons who conjointly annotated (fracture/no-fracture and AO Classification) the sagittal radiographs of 171 cases. CT and/or MRI were used confirm the presence and type of the fracture in all cases. 302 cropped vertebral images were labelled “fracture” and 328 “no fracture”. After augmentation, this dataset was then used to train, validate, and test deep learning classifiers based on the ResNet18 and VGG16 architectures. To ensure that the model's prediction was based on the correct identification of the fracture zone, an Activation Map analysis was conducted.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 49 - 49
1 Nov 2021
Barcik J Ernst M Buchholz T Constant C Zeiter S Gueorguiev B Windolf M
Full Access

Introduction and Objective

It is widely accepted that interfragmentary strain stimulus promotes callus formation during secondary bone healing. However, the impact of the temporal variation of mechanical stimulation on fracture healing is still not well understood. Moreover, the minimum strain value that initiates callus formation is unknown. The goal of this study was to develop an active fixation system that allows for in vivo testing of varying temporal distribution of mechanical stimulation and that enables detection of the strain limit that initiates callus formation.

Materials and Methods

We employed a previously established wedge defect model at the sheep tibia. The model incorporates two partial osteotomies directed perpendicularly to each other, thus creating a bone fragment in the shape of a wedge. The defect was instrumented with an active fixator that tilts the wedge around its apex to create a gradient of interfragmentary strain along the cutting line. The active fixator was equipped with a force and displacement sensors to measure the stiffness of the repair tissue during the course of healing. We developed a controller that enabled programming of different stimulation protocols and their autonomous execution during the in vivo experiment. The system was implanted in two sheep for a period of five weeks. The device was configured to execute immediate stimulation for one animal (stimulation from Day 1), and delayed stimulation for the other (stimulation from Day 22). The daily stimulation protocol consisted of 1’000 loading events evenly distributed over 12 hours from 9:00 am to 9:00 pm. The healing progression was monitored by the in vivo stiffness measurements provided by the fixator and by weekly radiographs. The impact of the local strain magnitude on bone formation was qualitatively evaluated on a post-mortem high-resolution CT scan of the animal with immediate stimulation.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 89 - 89
1 Nov 2021
Zderic I Caspar J Blauth M Weber A Koch R Stoffel K Finkemeier C Hessmann M Gueorguiev B
Full Access

Introduction and Objective

Intramedullary nails are frequently used for treatment of unstable distal tibia fractures. However, insufficient fixation of the distal fragment could result in delayed healing, malunion or nonunion. The quality of fixation may be adversely affected by the design of both the nail and locking screws, as well as by the fracture pattern and bone density. Recently, a novel concept for angular stable nailing has been developed that maintains the principle of relative stability and introduces improvements expected to reduce nail toggling, screw migration and secondary loss of reduction. It incorporates polyether ether ketone (PEEK) inlays integrated in the distal and proximal canal portions of the nail for angular stable screw locking. The nail can be used with new standard locking screws and low-profile retaining locking screws, both designed to enhance cortical fixation. The low-profile screws are with threaded head, anchoring in the bone and increasing the surface contact area due to the head's increased diameter.

The objective of this study was to investigate the biomechanical competence of the novel angular stable intramedullary nail concept for treatment of unstable distal tibia fractures, compared with four other nail designs in an artificial bone model under dynamic loading.

Materials and Methods

The distal 70 mm of thirty artificial tibiae (Synbone) were assigned to 5 groups for distal locking using either four different commercially available nails – group 1: Expert Tibia Nail (DePuy Synthes); group 2: TRIGEN META-NAIL with Internal Hex Captured Screws (Smith & Nephew); group 3: T2 Alpha with Locking Screws (Stryker); group 4: Natural Nail System featuring StabiliZe Technology (Zimmer) – or the novel angular stable TN-Advanced nail with low-profile screws (group 5, DePuy Synthes). The distal locking in all groups was performed using 2 mediolateral screws. All specimens were biomechanically tested under quasi-static and progressively increasing combined cyclic axial and torsional loading in internal rotation until failure, with monitoring by means of motion tracking.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 12 - 12
1 Mar 2021
Ahrend M Noser H Shanmugam R Kamer L Burr F Hügli H Zaman TK Richards G Gueorguiev B
Full Access

Artificial bone models (ABMs) are commonly used in traumatology and orthopedics for training, education, research and development purposes. The aim of this study was to develop the first evidence-based generic Asian pelvic bone model and compare it to an existing pelvic model.

A hundred clinical CT scans of intact adult pelvises (54.8±16.4 years, 161.3±8.3 cm) were acquired. They represented evenly distributed female and male patients of Malay (n=33), Chinese (n=34) and Indian (n=33) descent. The CTs were segmented and defined landmarks were placed. By this means, 100 individual three-dimensional models were calculated using thin plate spline transformation. Following, three statistical mean pelvic models (male, female, unisex) were generated. Anatomical variations were analyzed using principal component analysis (PCA). To quantify length variations, the distances between the anterior superior iliac spines (ASIS), the anterior inferior iliac spines (AIIS), the promontory and symphysis (conjugate vera) as well as the ischial spines (diameter transversa) were measured for the three mean models and the existing ABM.

PCA demonstrated large variability regarding pelvic surface and size. Principal component one (PC 1) contributed to 24% of the total anatomical variation and predominantly displayed a size variation pattern. PC 2 (17.7% of variation) mainly exhibited anatomical variations originating from differences in shape. Female and male models were similar in ASIS (225±20 mm; 227±13 mm) and AIIS (185±11 mm; 187±10 mm), whereas differed in conjugate vera (116±10 mm; 105±10 mm) and diameter transversa (105±7 mm; 88±8 mm). Comparing the Asian unisex model to the existing ABM, the external pelvic measurements ASIS (22.6 cm; 27.5 cm) and AIIS (186 mm; 209 mm) differed notably. Conjugate vera (111 mm; 105 mm) and diameter transversa (97 mm; 95 mm) were similar in both models. Low variability of mean distances (3.78±1.7 mm) was found beyond a sample number of 30 CTs.

Our analysis revealed notable anatomical variations regarding size dominating over shape and gender-specific variability. Dimensions of the generated mean models were comparatively smaller compared to the existing ABM. This highlights the necessity for generation of Asian ABMs by evidence-based modeling techniques.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 11 - 11
1 Mar 2021
Barcik J Ernst M Balligand M Dlaska CE Drenchev L Todorov S Gueorguiev B Skulev H Zeiter S Epari D Windolf M
Full Access

The course of secondary fracture healing typically consists of four major phases including inflammation, soft and hard callus formation, and bone remodeling. Callus formation is promoted by mechanical stimulation, yet little is known about the healing tissue response to strain stimuli over shorter timeframes on hourly and daily basis. The aim of this study was to explore the hourly, daily and weekly variations in bone healing progression and to analyze the short-term response of the repair tissue to well-controlled mechanical stimulation.

A system for continuous monitoring of fracture healing was designed for implantation in sheep tibia. The experimental model was adapted from Tufekci et al. 2018 and consisted of 3 mm transverse osteotomy and 30 mm bone defect resulting in an intermediate mobile bone fragment in the tibial shaft. Whereas the distal and proximal parts of the tibia were fixed with external fixator, the mobile fragment was connected to the proximal part via a second, active fixator. A linear actuator embedded in the active fixator moved the mobile fragment axially, thus stimulating mechanically the tissue in the osteotomy gap via well-controlled displacement being independent from the sheep's functional weightbearing. A load sensor was integrated in the active fixation to measure the force acting in the osteotomy gap. During each stimulation cycle the displacement and force magnitudes were recorded to determine in vivo fracture stiffness. Following approval of the local ethics committee, experiments were conducted on four skeletally mature sheep. Starting from the first day after surgery, the daily stimulation protocols consisted of 1000 loading events equally distributed over 12 hours from 9:00 to 21:00 resulting in a single loading event every 44 seconds. No stimulation was performed overnight.

One animal had to be excluded due to inconsistencies in the load sensor data. The onset of tissue stiffening was detected around the eleventh day post-op. However, on a daily basis, the stiffness was not steadily increasing, but instead, an abrupt drop was observed in the beginning of the daily stimulations. Following this initial drop, the stiffness increased until the last stimulation cycle of the day.

The continuous measurements enabled resolving the tissue response to strain stimuli over hours and days. The presented data contributes to the understanding of the influence of patient activity on daily variations in tissue stiffness and can serve to optimize rehabilitation protocols post fractures.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 22 - 22
1 Mar 2021
Makelov B Silva J Apivatthakakul T Gueorguiev B Varga P
Full Access

Osteosynthesis of high-energy metaphyseal proximal tibia fractures is still challenging, especially in patients with severe soft tissue injuries and/or short stature. Although the use of external fixators is the traditional treatment of choice for open comminuted fractures, patients' acceptance is low due to the high profile and therefore the physical burden of the devices. Recently, clinical case reports have shown that supercutaneous locked plating used as definite external fixation could be an efficient alternative. Therefore, the aim of this study was to evaluate the effect of implant configuration on stability and interfragmentary motions of unstable proximal tibia fractures fixed by means of externalized locked plating. Based on a right tibia CT scan of a 48 years-old male donor, a finite element model of an unstable proximal tibia fracture was developed to compare the stability of one internal and two different externalized plate fixations. A 2-cm osteotomy gap, located 5 cm distally to the articular surface and replicating an AO/OTA 41-C2.2 fracture, was virtually fixed with a medial stainless steel LISS-DF plate. Three implant configurations (IC) with different plate elevations were modelled and virtually tested biomechanically: IC-1 with 2-mm elevation (internal locked plate fixation), IC-2 with 22-mm elevation (externalized locked plate fixation with thin soft tissue simulation) and IC-3 with 32-mm elevation (externalized locked plate fixation with thick soft tissue simulation). Axial loads of 25 kg (partial weightbearing) and 80 kg (full weightbearing) were applied to the proximal tibia end and distributed at a ratio of 80%/20% on the medial/lateral condyles. A hinge joint was simulated at the distal end of the tibia. Parameters of interest were construct stiffness, as well as interfragmentary motion and longitudinal strain at the most lateral aspect of the fracture. Construct stiffness was 655 N/mm (IC-1), 197 N/mm (IC-2) and 128 N/mm (IC-3). Interfragmentary motions under partial weightbearing were 0.31 mm (IC-1), 1.09 mm (IC-2) and 1.74 mm (IC-3), whereas under full weightbearing they were 0.97 mm (IC-1), 3.50 mm (IC-2) and 5.56 mm (IC-3). The corresponding longitudinal strains at the fracture site under partial weightbearing were 1.55% (IC-1), 5.45% (IC-2) and 8.70% (IC-3).

From virtual biomechanics point of view, externalized locked plating of unstable proximal tibia fractures with simulated thin and thick soft tissue environment seems to ensure favorable conditions for callus formation with longitudinal strains at the fracture site not exceeding 10%, thus providing appropriate relative stability for secondary bone healing under partial weightbearing during the early postoperative phase.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 7 - 7
1 Mar 2021
Barcik J Ernst M Freitag L Dlaska CE Drenchev L Todorov S Gueorguiev B Skulev H Zeiter S Epari D Windlof M
Full Access

In the course of uneventful secondary bone healing, a fracture gap is progressively overgrown by callus which subsequently calcifies and remodels into new bone. It is widely accepted that callus formation is promoted by mechanical stimulation of the tissue in the fracture gap. However, the optimal levels of the interfragmentary motion's amplitude, frequency and timing remain unknown. The aim of this study was to develop an active fixation system capable of installing a well-controlled mechanical environment in the fracture gap with continuous monitoring of the bone healing progression.

The experimental model was adapted from Tufekci et al. 2018 and required creation of a critical size defect and an osteotomy in a sheep tibia. They were separated by a mobile bone fragment. The distal and proximal parts of the tibia were fixed with an external fixator, whereas the mobile fragment was connected to the proximal part with an active fixator equipped with a linear actuator to move it axially for mechanical stimulation of the tissue in the fracture gap. This configuration installed well-controlled mechanical conditions in the osteotomy, dependent only on the motion of the active fixator and shielded from the influence of the sheep's functional weightbearing. A load sensor was integrated to measure the force acting in the fracture gap during mechanical stimulation. The motion of the bone fragment was controlled by means of a custom-made controller allowing to program stimulation protocols of various profiles, amplitudes and frequencies of loading events. Following in vitro testing, the system was tested in two Swiss White Alpine Sheep. It was configured to simulate immediate weightbearing for one of the animals and delayed weightbearing for the other. The applied loading protocol consisted of 1000 loading events evenly distributed over 12 hours resulting in in a single loading event every 44 seconds.

Bench testing confirmed the ability of the system to operate effectively with frequencies up to 1Hz over a range of stimulation amplitudes from 0.1 to 1.5 mm. Continuous measurements of in vivo callus stiffness revealed progressive fracture consolidation in the course of each experiment. A delayed onset of fracture healing was observed in the sheep with simulated delayed weightbearing.

The conducted preclinical experiments demonstrated its robustness and reliability. The system can be applied for further preclinical research and comprehensive in-depth investigation of fracture healing.