header advert
Results 801 - 900 of over 10000
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 87 - 87
2 Jan 2024
Vargel I Açil M Tuncel S Baysal N Hartuç I Okur H Korkusuz F
Full Access

Deriving autologous mesenchymal stem cells (MSCs) from adipose tissues without using enzymes requires sophisticated biomedical instruments. Applied pressure on tissues and cells are adjusted manually although centrifugation and filtration systems are frequently used. The number of derived MSCs therefore could differ between instruments. We compared the number of MSCs obtained from four commercially available devices and our newly designed and produced instrument (A2, B3, L3, M2 and T3). Three-hundred mL of adipose tissue was obtained from a female patient undergoing liposuction using the transillumination solution. Obtained tissue was equally distributed to each device and handled according to the producers' guides. After handling, 3 mL stromal vascular fraction (SVF) was obtained from each device. Freshly isolated SVF was characterized using multi-color flow cytometry (Navios Flow Cytometer, Beckman Coulter, USA). Cell surface antigens were chosen according to IFATS and ISCT. CD31-FITC, CD34-PC5,5, CD73-PE, CD90-PB and CD45-A750 (Backman Coulter, USA) fluorochrome-labeled monoclonal antibodies were assessed. Markers were combined with ViaKrome (Beckman Coulter, USA) to determine cell viability. At least 105 cells were acquired from each sample. A software (Navios EX, Beckman Coulter, USA) was used to create dot plots and to calculate the cell composition percentages. The data was analyzed in the Kaluza 2.1 software package (Beckman Coulter, USA). Graphs were prepared in GraphPad Prism. CD105 PC7/CD31 FITC cell percentages were 23,9%, 13,5%, 24,6%, 11,4% and 28,8% for the A2, B3, L3, M2 and T3 devices, respectively. We conclude that the isolated MSC percentage ranged from 11,4% to 28,8% between devices. The number of MSCs in SVF are key determinants of success in orthobiological treatments. Developing a device should focus on increasing the number of MSCs in the SVF while preserving its metabolic activity.

Acknowledgments: Scientific and Technological Research Council of Türkiye (TÜBİTAK)- Technology and Innovation Funding Program Directorate (TEYDEB) funded this project (#321893). Servet Kürümoğlu and Bariscan Önder of Disposet Ltd., Ankara, Türkiye (www.disposet.com) contributed to the industrial design and research studies. Ali Tuncel and Feza Korkusuz are members of the Turkish Academy of Sciences (TÜBA). Nilsu Baysal was funded by the STAR Program of TÜBITAK Grant # 3210893.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 29 - 29
4 Apr 2023
Bolam S Konar S Zhu M Workman J Lim K Woodfield T Monk P Coleman B Cornish J Munro J Musson D
Full Access

Re-rupture rates after rotator cuff repair remain high because of inadequate biological healing at the tendon-bone interface. Single-growth factor therapies to augment healing at the enthesis have so far yielded inconsistent results. An emerging approach is to combine multiple growth factors over a spatiotemporal distribution that mimics normal healing. We propose a novel combination treatment of insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1) and parathyroid hormone (PTH) incorporated into a controlled-release tyraminated poly-vinyl-alcohol hydrogel to improve healing after rotator cuff repair. We aimed to evaluate this growth factor treatment in a rat chronic rotator cuff tear model.

A total of 30 male Sprague-Dawley rats underwent unilateral supraspinatus tenotomy. Delayed rotator cuff repairs were then performed after 3 weeks, to allow tendon degeneration that resembles the human clinical scenario. Animals were randomly assigned to: [1] a control group with repair alone; or [2] a treatment group in which the hydrogel was applied at the repair site. All animals were euthanized 12 weeks after rotator cuff surgery and the explanted shoulders were analyzed for biomechanical strength and histological quality of healing at the repair site.

In the treatment group had significantly higher stress at failure (73% improvement, P=0.003) and Young's modulus (56% improvement, P=0.028) compared to the control group. Histological assessment revealed improved healing with significantly higher overall histological scores (10.1 of 15 vs 6.55 of 15, P=0.032), and lower inflammation and vascularity.

This novel combination growth factor treatment improved the quality of healing and strength of the repaired enthesis in a chronic rotator cuff tear model. Further optimization and tailoring of the growth factors hydrogel is required prior to consideration for clinical use in the treatment of rotator cuff tears. This novel treatment approach holds promise for improving biological healing of this clinically challenging problem.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 41 - 41
11 Apr 2023
Deegan A Lawlor L Yang X Yang Y
Full Access

Our previous research has demonstrated that minor adjustments to in vitro cellular aggregation parameters, i.e. alterations to aggregate size, can influence temporal and spatial mineral depositions within maturing bone cell nodules. What remains unclear, however, is how aggregate size might affect mineralisation within said nodules over long-term in vivo culture.

In this study, we used an osteoblast cell line, MLO-A5, and a primary cell culture, mesenchymal stem cells (MSC), to compare small (approximately 80 µm) with large (approximately 220 µm) cellular aggregates for potential bone nodule development after 8 weeks of culturing in a mouse model (n = 4 each group). In total, 30 chambers were implanted into the intra-peritoneal cavity of 20 male, immunocompromised mice (MF1-Nu/Nu, 4 – 5 weeks old). Nine small or three large aggregates were used per chamber. Neoveil mesh was seeded directly with 2 × 103 cells for monolayer control. At 8 weeks, the animals were euthanised and chambers fixed with formalin. Aggregate integrity and extracellular material growth were assessed via light microscopy and the potential mineralisation was assessed via micro-CT.

Many large aggregates appeared to disintegrate, whilst the small aggregates maintained their form and produced additional extracellular material with increased sizes. Both MLO-A5 cells and MSC cells saw similar results. Interestingly, however, the MSCs were also seen to produce a significantly higher volume of dense material compared to the MLO-A5 cells from micro-CT analysis.

Overall, a critical cell aggregate size appeared to exist balancing optimal tissue growth with oxygen diffusion, and cell source may influence differentiation pathway despite similar experimental parameters. The MSCs, for example, were likely producing bone via the endochondral ossification pathway, whilst the matured bone cells, MLO-A5 cells, were likely producing bone via the intramembranous ossification pathway.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 46 - 46
2 Jan 2024
Fleischmann N Braun T Reinhardt A Schotte T Wehrmann J Rüdig V Gögele C Kokozidou M Werner C Schulze-Tanzil G
Full Access

Osteoarthritis (OA) and diabetis mellitus type 2 (DMT2) are pathogenetically linked. Complement dysregulation contributes to OA and could be involved in DMT2. The inflammatory anaphylatoxin C5a is released during complement activation. This study aims to understand the specific responses of chondrocytes isolated from diabetic and non-diabetic rats exposed to C5a and/or the proinflammatory cytokine TNFα in vitro dependent on the glucose supply. Articular chondrocytes of adult Zucker Diabetic Fatty (ZDF) rats (homozygous: fa/fa, diabetic, heterozygous: fa/+, lean controls) were exposed to 10 ng/mL TNFα and 25 ng/mL C5a alone or in combination, both, under normo- (NG, 1 g/L glucose) and hyperglycemic (HG, 4.5 g/L glucose) conditions (4 or 24 h). Chondrocyte survival, metabolic activity and gene expression of collagen type 2, suppressors of cytokine signaling (SOCS)1, −3 and anti-oxidative hemoxygenase-1 (HMOX1) were assessed. The complement regulatory protein CD46 and cell nuclei sizes were analyzed. Chondrocyte vitality remained unaffected by the treatment. Metabolic activity was impaired in chondrocytes of non-diabetic rats under HG conditions. Collagen type 2 transcription was suppressed by TNFα under HG condition in chondrocytes from nondiabetic donors and under both conditions in those of DMT2 rats (24 h)

Except for DMT2 chondrocytes under HG (4 h), HMOX1 was generally induced by TNFα +/- C5a (NG, HG). C5a elevated HMOX1 only in chondrocytes of controls. The SOCS1/3 genes were increased by TNFα (NG, diabetic, non diabetic, 4 and 24 h). This could also be observed in chondrocytes of diabetic, but not of lean rats (24 h, HG). At 4 h, C5a induced SOCS1 only in non diabetic chondrocytes (NG, HG). Cytoprotective CD46 protein was suppressed by TNFα under NG condition. Nuclear volumes of chondrocyte were lower in chondrocytes from DMT2 rats compared to those from controls. The differential response suggests that chondrocytes are irreversibly compromised by DMT2.

Achnowledgement: The authors are grateful for the support by the “Stiftung Edoprothetik (S 04/21)”


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 87 - 87
17 Apr 2023
Aljuaid M Alzahrani S Bazaid Z Zamil H
Full Access

Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the normal range of the parameters that are used to assess both was a matter of essence. Nevertheless, the main aim of this study was clarification the relationship between acetabular inclination (AI) and acetabular and femoral head arcs’ radii (AAR and FHAR).

A cross-sectional retrospective study that had been done in a tertiary center where Computed tomography abdomen scouts’ radiographs of non-orthopedics patients were included. They had no history of pelvic or hips’ related symptoms or fractures in femur or pelvis.

A total of 84 patients was included with 52% of them were females. The mean of age was 30.38± 5.48. Also, Means of AI were 38.02±3.89 and 40.15±4.40 (P 0.02, significant gender difference) for males and females, respectively. Nonetheless, Head neck shaft angle (HNSA) means were 129.90±5.55 and 130.72±6.62 for males and females, respectively. However, AAR and FHAR means for males and females were 21.3±3.1mm, 19.9±3.1mm, P 0.04 and 19.7±3.1mm, 18.1±2.7mm, P 0.019, respectively. In addition, negative significant correlations were detected between AI against AAR, FHAR, HNSA and body mass index (BMI) (r 0.529, P ≤0.0001, r 0.445, P ≤0.0001, r 0.238, P 0.029, r 0.329, P ≤0.007, respectively). On the other hand, high BMI was associated with AAR and FHAR (r 0.577, P 0.0001 and r 0.266, p 0.031, respectively).

This study shows that high AI is correlated with lower AAR, FHAR. Each ethnic group has its own normal values that must be studied to tailor the path for future implications in clinical setting.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 42 - 42
11 Apr 2023
Hanetseder D Hruschka V Redl H Presen D
Full Access

Mesenchymal stem cells (MSCs) have the potential to repair and regenerate damaged tissues in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. Previous studies suggested that the regenerative activity of stem cells can be enhanced by exposure to tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells-derived mesenchymal-like progenitors (hiPSCs-MPs) can enhance the regenerative potential of human bone marrow mesenchymal stromal cells (hBMSCs).

ECM was engineered from hiPSC-MPs. ECM structure and composition were characterized before and after decellularization using immunofluorescence and biochemical assays. hBMSCs were cultured on the engineered ECM, and differentiated into osteogenic, chondrogenic and adipogenic lineages. Growth and differentiation responses were compared to tissue culture plastic controls.

Decellularization of ECM resulted in efficient cell elimination, as observed in our previous studies. Cultivation hBMSCs on the ECM in osteogenic medium significantly increased hBMSC growth, collagen deposition and alkaline phosphatase activity. Furthermore, expression of osteogenic genes and matrix mineralization were significantly higher compared to plastic controls. Chondrogenic micromass culture on the ECM significantly increased cell growth and expression of chondrogenic markers, including glycosaminoglycans and collagen type II. Adipogenic differentiation of hBMSCs on the ECM resulted in significantly increased hBMSC growth, but significantly reduced lipid vacuole deposition compared to plastic controls. Together, our studies suggest that BMSCs differentiation into osteogenic and chondrogenic lineages can be enhanced, whereas adipogenic activity is decreased by the culture on engineered ECM. Contribution of specific matrix components and underlying mechanisms need to be further elucidated.

Our studies suggest that the three-lineage differentiation of aged BMSCs can be modulated by culture on hiPSC-engineered ECM. Further studies are aimed at scaling-up to three-dimensional ECM constructs for osteochondral tissue regeneration.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 124 - 124
4 Apr 2023
van Knegsel K Hsu C Huang K Benca E Ganse B Pastor T Gueorguiev B Varga P Knobe M
Full Access

The lateral wall thickness (LWT) in trochanteric femoral fractures is a known predictive factor for postoperative fracture stability. Currently, the AO/OTA classification uses a patient non-specific measure to assess the absolute LWT (aLWT) and distinguish stable A1.3 from unstable A2.1 fractures based on a threshold of 20.5 mm. This approach potentially results in interpatient deviations due to different bone morphologies and consequently variations in fracture stability. Therefore, the aim of this study was to explore whether a patient-specific measure for assessment of the relative LWT (rLWT) results in a more precise threshold for prediction of unstable fractures.

Part 1 of the study evaluated 146 pelvic radiographs to assess left-right symmetry with regard to caput-collum-angle (CCD) and total trochanteric thickness (TTT), and used the results to establish the rLWT measurement technique. Part 2 reevaluated 202 patients from a previous study cohort to analyze their rLWT versus aLWT for optimization purposes.

Findings in Part 1 demonstrated a bilateral symmetry of the femur regarding both CCD and TTT (p ≥ 0.827) allowing to mirror bone's morphology and geometry from the contralateral intact to the fractured femur. Outcomes in Part 2 resulted in an increased accuracy for the new determined rLWT threshold (50.5%) versus the standard 20.5 mm aLWT threshold, with sensitivity of 83.7% versus 82.7% and specificity 81.3% versus 77.8%, respectively.

The novel patient-specific rLWT measure can be based on the contralateral femur anatomy and is a more accurate predictor of a secondary lateral wall fracture in comparison to the conventional aLWT. This study established the threshold of 50.5% rLWT as a reference value for prediction of fracture stability and selection of an appropriate implant for fixation of trochanteric femoral fractures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 32 - 32
4 Apr 2023
Pareatumbee P Yew A Meng Chou S Koh J Zainul-Abidin S Howe T Tan M
Full Access

To analyse bone stresses in humerus-megaprosthesis construct in response to axial loading under varying implant lengths in proximal humeral replacement following tumour excision.

CT scans of 10 cadaveric humeri were processed in 3D Slicer to obtain three-dimensional (3D) models of the cortical and cancellous bone. Megaprostheses of varying body lengths (L) were modelled in FreeCAD to obtain the 3D geometry. Four FE models: group A consisting of intact bone; groups B (L=40mm), C (L=100mm) and D (L=120mm) comprising of humerus-megaprosthesis constructs were created. Isotropic linear elastic behaviour was assigned for all materials. A tensile load of 200N was applied to the elbow joint surface with the glenohumeral joint fixed with fully bonded contact interfaces. Static analysis was performed in Abaqus. The bone was divided at every 5% bone length beginning distally. Statistical analysis was performed on maximum von Mises stresses in cortical and cancellous bone across each slice using one-way ANOVA (0-45% bone length) and paired t-tests (45-70% bone length). To quantify extent of stress shielding, average percentage change in stress from intact bone was also computed.

Maximum stress was seen to occur distally and anteriorly above the coronoid fossa. Results indicated statistically significant differences between intact state and shorter megaprostheses relative to longer megaprostheses and proximally between intact and implanted bones. Varying levels of stress shielding were recorded across multiple slices for all megaprosthesis lengths. The degree of stress shielding increased with implant lengthening being 2-4 times in C and D compared to B.

Axial loading of the humerus can occur with direct loading on outstretched upper limbs or indirectly through the elbow. Resultant stress shielding effect predicted in longer megaprosthesis models may become clinically relevant in repetitive axial loading during activities of daily living. It is recommended to use shorter megaprosthesis to prevent failure.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 49 - 49
2 Jan 2024
Gantenbein B
Full Access

Stem cell therapy for the intervertebral disc (IVD) is highly debated but holds great promises. From previous studies, it is known that notochordal cells are highly regenerative and may stimulate other differentiated cells to produce more matrix. Lately, a particular tissue-specific progenitor cell population has been identified in the centre of the intervertebral disc (IVD. The current hope is that these nucleus pulposus progenitor cells (NPPC) could play a particular role in IVD regeneration.

Current evidence confirms the presence of these cells in murine, canine, bovine and in the human fetal/surgical samples. Noteworthy, one of the main markers to identify these cells, i.e., Tie2, is a typical marker for endothelial cells. Thus, it is not very clear what their origin and their role might be in the context of developmental biology. In human surgical specimens, their presence is, even more, obscured depending on the donor's age and the condition of the IVD and other yet unknown factors.

Here, I revisit the recent literature on regenerative cells identified for the IVD in the past decades. Current evidence how these NPPC can be isolated and detected in various species and tissues will be recapitulated. Future directions will be provided on how these progenitor cells could be used for regenerative medicine and tissue engineering.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 92 - 92
2 Jan 2024
Forteza-Genestra MA Antich-Rosselló M Ráez-Meseguer C Ramis-Munar G Sangenís AT Calvo J Gayà A Monjo M Ramis JM
Full Access

Osteoarthritis (OA) is a degenerative disease that lacks regenerative treatment options. Current research focuses on mesenchymal stem cells (MSCs) and Platelet-Rich Plasma (PRP) as regenerative therapies, but extracellular vesicles (EVs) have shown to be more advantageous. This study compares the regenerative potential of human umbilical cord MSC-derived EVs (cEVs) and platelet-derived EVs (pEVs) in ex vivo and in vivo OA models.

In the ex vivo study, OA conditions were induced in human cartilage explants, which were then treated either with pEVs or cEVs. Results showed a higher content of DNA and collagen in the pEVs group compared to control and cEVs groups, suggesting that pEVs could be a potential alternative to cEVs.

In the in vivo study, an OA model was established in the knee joints of rats through MIA (monoiodoacetate) injection and then treated either with pEVs or cEVs. Results showed that pEVs-treated knee joints had better subchondral bone integrity and greater OA reversion, particularly in female rats, indicating that pEVs are a viable regeneration treatment for OA and outperform cEVs in terms of efficacy.

Overall, the study demonstrates the potential of EVs as a regenerative treatment for OA, with pEVs showing promising results in both ex vivo and in vivo models. The use of pEVs in clinical practice could provide a faster path to translation due to the established use of platelet concentrates in therapeutics. However, further studies are needed to fully evaluate the potential of pEVs for OA treatment and to elucidate the mechanisms behind their regenerative effects.

Acknowledgments: The authors thank Dr Fernando Hierro (UIB) for their technical contribution with TEM, Mª Trinidad García (UIB) for the access to radioactivity facilities, Aina Arbós (IUNICS) for her contribution in the histology staining, María Tortosa (IdISBa) for her assistance with the animal care and ADEMA School of Dentistry for the access to the cone beam computed tomography (CBCT).

Funding: This research was funded by Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, co-funded by the ESF European Social Fund and the ERDF European Regional Development Fund (MS16/00124; CP16/00124), PROGRAMA JUNIOR del proyecto TALENT PLUS, construyendo SALUD, generando VALOR (JUNIOR01/18), financed by the sustainable tourism tax of the Balearic Islands; the Direcció General d'Investigació and Conselleria d'Investigació, Govern Balear (FPI/2046/2017); the Mecanisme de Recuperació i Resiliència, intended to execute research projects of «Noves polítiques públiques per a un mercat de treball dinàmic, resilient i inclusiu», collected in Pla de Recuperació, Transformació i Resiliència, financed by European Union-Next Generation EU and driven by SOIB and Conselleria de Fons Europeus, Universitat i Cultura i la Conselleria de Model Econòmic, Turisme i Treball (NG0421) and the grant SYN20/03 from IdISBa.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 90 - 90
17 Apr 2023
Kale S Singh S Dhar S
Full Access

To evaluate the functional outcome of open humerus diaphyseal fractures treated with the Three-stitch technique of antegrade humerus nailing.

This is a retrospective study conducted at the Department of Orthopaedics in D. Y. Patil University, School of Medicine, Navi Mumbai, India. The study included 25 patients who were operated on from January 2019 to April 2021 and follow-ups done till May 2022. Inclusion criteria were adult patients with open humerus diaphyseal fractures (Gustilo-Anderson Classification). All patients with closed fractures, skeletally immature patients, and patients with associated head injury were excluded from the study. All patients were operated on with a minimally invasive Three-stitch technique for antegrade humerus nailing. All patients were evaluated based on DASH score.

Out of the 25 patients included in the study, all patients showed complete union. The mean age of the patients was 40.4 years (range 23–66 years). The average period for consolidation of fracture was 10.56 weeks (range 8–14 weeks). The DASH score ranged from 0 to 15.8 with an average score of 2.96. Five patients reported complications with three patients of post-operative infection and delayed wound healing and two patients with screw loosening. All complications were resolved with proper wound care and the complete union was noted. None of the patients had an iatrogenic neurovascular injury.

Three-stitch antegrade nailing technique is a novel method to treat diaphyseal humerus fractures and provides excellent results. It has various advantages such as minimal invasiveness, minimal injury to the rotator cuff, fewer infection rates, minimal iatrogenic injuries, and good functional outcomes. Therefore, this treatment modality can be effectively used for open humerus diaphyseal fractures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 91 - 91
17 Apr 2023
Snuggs J Senter R Whitt J Le Maitre C
Full Access

Low back pain affects 80% of the population with half of cases attributed to intervertebral disc (IVD) degeneration. However, the majority of treatments focus on pain management, with none targeting the underlying pathophysiological causes. PCRX-201 presents a novel gene therapy approach that addresses this issue. PCRX-201 codes for interleukin-1 receptor antagonist (IL-1Ra), the natural inhibitor of the pro-inflammatory cytokine IL-1, which orchestrates the catabolic degeneration of the IVD. Our objective here is to determine the ability of PCRX-201 to infect human nucleus pulposus (NP) cells and tissue to increase the production of IL-1Ra and assess downstream effects on catabolic protein production.

Degenerate human NP cells and tissue explants were infected with PCRX-201 at 0 or 3000 multiplicities of infection (MOI) and subsequently cultured for 5 days in monolayer (n=7), 21 days in alginate beads (n=6) and 14 days in tissue explants (n=5). Cell culture supernatant was collected throughout culture duration and downstream targets associated with pain and degeneration were assessed using ELISA.

IL-1Ra production was increased in NP cells and tissue infected with PCRX-201. The production of downstream catabolic proteins such as IL-1β, IL-6, MMP3, ADAMTS4 and VEGF was decreased in both 3D-cultured NP cells and tissue explants.

Here, we have demonstrated that a novel gene therapy, PCRX-201, is able to infect and increase the production of IL-1Ra in degenerate NP cells and tissue in vitro. The increase of IL-1Ra also resulted in a decrease in the production of a number of pro-inflammatory and catabolic proteins, suggesting PCRX-201 enables the inhibition of IL-1-driven IVD degeneration. At present, no treatments for IVD degeneration target the underlying pathology. The ability of FX201 to elicit anti-catabolic responses is promising and warrants further investigation in vitro and in vivo, to determine the efficacy of this exciting, novel gene therapy.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 127 - 127
4 Apr 2023
Sankar S Antonik M Hassan S
Full Access

The e-scooter trial was part of a wider initiative from the Department for Transport in response to COVID pandemic. New emergency legislation was introduced in 2020 to make e-scooters legal in the UK for the first time. This scheme was launched in our county from September 2020. The aim of this case series was to identify the types of Orthopedic injuries resultant from electric scooter transport that presented to our District General Hospital over a 16-month period between September 2020 and December 2021.

This study involved retrospective collection of data from electronic hospital records. Data on demographics, laterality, date of injury, type of injury, treatment, HDU/ITU admissions, mortality, and operating time were collected to characterize the types of e-scooter-related injuries and to investigate the frequency of such injuries over the duration of our search.

A total of 79 orthopedic patients identified with electric scooter injuries between September 2020 and December 2021. 78.5% were males and the mean age was 30.1 years. Summer months accounted for most of the injuries. 17 patients required inpatient care. 23 patients required surgical intervention and a total of 29 surgeries were performed in our hospital. This accounted for a total surgical time of 2088 minutes. One patient admitted with shaft of femur fracture developed pulmonary embolism after the definitive operation and died in HDU.

Electric scooters provide a space efficient, affordable, environmentally friendly mode of transportation which reduce the urban congestion and parking issues. This study demonstrates an increasing frequency of significant orthopedic injury associated with e-scooter use treated at our centre over the course of 16 months. This small series underlines an important problem given that this increase has occurred after the start of the electric scooter trial. Legalization might result in further increase in the incidence of injury.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 115 - 115
23 Feb 2023
Chai Y Boudali A Farey J Walter W
Full Access

Pelvic tilt (PT) is always described as the pelvic orientation along the transverse axis, yet four PT definitions were established based on different radiographic landmarks: anterior pelvic plane (PTa), the centres of femoral heads and sacral plate (PTm), pelvic outlet (PTh), and sacral slope (SS). These landmarks quantify a similar concept, yet understanding of their relationships is lacking. Some studies referred to the words “pelvic tilt” for horizontal comparisons, but their PT definitions might differ. There is a demand for understanding their correlations and differences for education and research purposes.

This study recruited 105 sagittal pelvic radiographs (68 males and 37 females) from a single clinic awaiting their hip surgeries. Hip hardware and spine pathologies were examined for sub-group analysis. Two observers annotated four PTs in a gender-dependent manner and repeated it after six months. The linear regression model and intraclass correlation coefficient (ICC) were applied with a 95% significance interval.

The SS showed significant gender differences and the lowest correlations to the other parameters in the male group (−0.3< r <0.2). The correlations of SS in scoliosis (n = 7) and hip implant (female, n = 18) groups were statistically different, yet the sample sizes were too small. PTm demonstrated very strong correlation to PTh (r > 0.9) under the linear model PTm = 0.951 × PTh - 68.284.

The PTm and PTh are interchangeable under a simple linear regression model, which enables study comparisons between them. In the male group, SS is more of a personalised spinal landmark independent of the pelvic anatomy. Female patients with hip implant may have more static spinopelvic relationships following a certain pattern, yet a deeper study using a larger dataset is required. The understanding of different PTs improves anatomical education.


The relationship of degeneration to symptoms has been questioned. MRI detects apparently similar disc degeneration and degenerative changes in subjects both with and without back pain. We aimed to overcome these problems by re-annotating MRIs from asymptomatic and symptomatic groups onto the same grading system.

We analysed disc degeneration in pre-existing large MRI datasets. Their MRIs were all originally annotated on different scales. We re-annotated all MRIs independent of their initial grading system, using a verified, rapid automated MRI annotation system (SpineNet) which reported degeneration on the Pfirrmann (1-5) scale, and other degenerative features (herniation, endplate defects, marrow signs, spinal stenosis) as binary present/absent. We compared prevalence of degenerative features between symptomatics and asymptomatics.

Pfirrmann degeneration grades in relation to age and spinal level were very similar for the two independent groups of symptomatics over all ages and spinal levels. Severe degenerative changes were significantly more prevalent in discs of symptomatics than asymptomatics in the caudal but not the rostral lumbar discs in subjects < 60 years. We found high co-existence of degenerative features in both populations. Degeneration was minimal in around 30% of symptomatics < 50 years.

We confirmed age and disc level are significant in determining imaging differences between asymptomatic and symptomatic populations and should not be ignored. Automated analysis, by rapidly combining and comparing data from existing groups with MRIs and information on LBP, provides a way in which epidemiological and ‘big data’ analysis could be advanced without the expense of collecting new groups.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 134 - 134
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 141 - 141
11 Apr 2023
du Moulin W Bourne M Diamond L Konrath J Vertullo C Lloyd D Saxby D
Full Access

Anterior cruciate ligament reconstruction (ACLR) using a semitendinosus (ST) autograft, with or without gracilis (GR), results in donor muscle atrophy and varied tendon regeneration. The effects of harvesting these muscles on muscle moment arm and torque generating capacity have not been well described. This study aimed to determine between-limb differences (ACLR vs uninjured contralateral) in muscle moment arm and torque generating capacity across a full range of hip and knee motions.

A secondary analysis of magnetic resonance imaging was undertaken from 8 individuals with unilateral history of ST-GR ACLR with complete ST tendon regeneration. All hamstring muscles and ST tendons were manually segmented. Muscle length (cm), peak cross-sectional area (CSA) (cm2), and volume (cm3) were measured in ACLR and uninjured contralateral limbs. OpenSim was used to simulate and evaluate the mechanical consequences of changes in normalised moment arm (m) and torque generating capacity (N.m) between ACLR and uninjured contralateral limbs.

Compared to uninjured contralateral limbs, regenerated ST tendon re-insertion varied proximal (+) (mean = 0.66cm, maximum = 3.44cm, minimum = −2.17cm, range = 5.61cm) and posterior (+) (mean = 0.38cm maximum = 0.71cm, minimum = 0.02cm, range = 0.69cm) locations relative to native anatomical positions. Compared to uninjured contralateral limbs, change in ST tendon insertion point in ACLR limbs resulted in 2.5% loss in peak moment arm and a 3.4% loss in peak torque generating capacity. Accounting for changes to both max isometric force and ST moment arm, the ST had a 14.8% loss in peak torque generating capacity.

There are significant deficits in ST muscle morphology and insertion points following ST-GR ACLR. The ST atrophy and insertion point migration following ACLR may affect force transmission and distribution within the hamstrings and contribute to persistent deficits in knee flexor and internal rotator strength.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 35 - 35
4 Apr 2023
Teo B Yew A Tan M Chou S Lie D
Full Access

This study aims to compare the biomechanical properties of the “Double Lasso-Loop” suture anchor (DLSA) technique with the commonly performed interference screw (IS) technique in an ex vivo ovine model.

Fourteen fresh sheep shoulder specimens were used in this study. Dissection was performed leaving only the biceps muscle attached to the humerus and proximal radius before sharply incised to simulate long head of biceps tendon (LHBT) tear. Repair of the LHBT tear was performed on all specimens using either DSLA or IS technique. Cyclical loading of 500 cycles followed by load to failure was performed on all specimens. Tendon displacement due to the cyclical loading at every 100 cycles as well as the maximum load at failure were recorded and analysed. Stiffness was also calculated from the load displacement graph during load to failure testing.

No statistically significant difference in tendon displacement was observed from 200 to 500 cycles. Statistically significant higher stiffness was observed in IS when compared with DSLA (P = .005). Similarly, IS demonstrated significantly higher ultimate failure load as compared with DSLA (P = .001). Modes of failure observed for DSLA was mostly due to suture failure (7/8) and anchor pull-out (1/8) while IS resulted in mostly LHBT (4/6) or biceps (2/6) tears. DSLA failure load were compared with previous studies and similar results were noted.

After cyclical loading, tendon displacement in DLSA technique was not significantly different from IS technique. Despite the higher failure loads associated with IS techniques in the present study, absolute peak load characteristics of DLSA were similar to previous studies. Hence, DLSA technique can be considered as a suitable alternative to IS fixation for biceps tenodesis.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 130 - 130
4 Apr 2023
Shi Y Deganello D Xia Z
Full Access

Bone defects require implantable graft substitutes, especially porous and biodegradable biomaterial for tissue regeneration. The aim of this study was to fabricate and assess a 3D-printed biodegradable hydroxyapatite/calcium carbonate scaffold for bone regeneration.

Materials and methods:

A 3D-printed biodegradable biomaterial containing calcium phosphate and aragonite (calcium carbonate) was fabricated using a Bioplotter. The physicochemical properties of the material were characterised. The materials were assessed in vitro for cytotoxicity and ostegenic potential and in vivo in rat intercondylar Φ3mm bone defect model for 3 months and Φ5mm of mini pig femoral bone defects for 6 months.

The results showed that the materials contained hydroxyapatite and calcium carbonate, with the compression strength of 2.49± 0.2 MPa, pore size of 300.00 ± 41mm, and porosity of 40.±3%. The hydroxyapatite/aragonite was not cytotoxic and it promoted osteogenic differentiation of human umbilical cord matrix mesenchymal stem cells in vitro. After implantation, the bone defects were healed in the treatment group whereas the defect of controlled group with gelatin sponge implantation remained non-union. hydroxyapatite/aragonite fully integrated with host bone tissue and bridged the defects in 2 months, and significant biodegradation was followed by host new bone formation. After implantation into Φ5mm femoral defects in mini pigs hydroxyapatite/aragonite were completed degraded in 6 months and fully replaced by host bone formation, which matched the healing and degradation of porcine allogenic bone graft.

In conclusion, hydroxyapatite/aragonite is a suitable new scaffold for bone regeneration. The calcium carbonate in the materials may have played an important role in osteogenesis and material biodegradation.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 98 - 98
2 Jan 2024
Aydin MS
Full Access

Conventional 3D printing by itself is incapable of creating pores on a micro scale within deposited filaments throughout 3D scaffolds. These pores and hence larger surface areas are needed for cells to be adhered, proliferated, and differentiated. The aim of this work was to fabricate 3D polycaprolactone (PCL) scaffolds with internal multiscale porosity by using two different 3D printing techniques (ink/pellet of polymer-salt composite in low/high temperature printing) combined with salt leaching to improve cell adhesion, and cell proliferation besides to change degradation rate of PCL scaffolds:

1. Non-solvent phase separation integrated 3D printing of polymer-salt inks with various salt content (i.e., low temperature ink-based printing, LT).

2. FDM printing of composite polymer-salt pellets which will be obtained by casting and evaporating of prepared ink (i.e., high temperature composite-pellet-based printing, HT).

Further, the two approaches were followed by post salt leaching. Stem cells were able to attach on the surface and grow up to 14 days based on increasing cellular activities.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 131 - 131
4 Apr 2023
Korcari A Nichols A Loiselle A
Full Access

Depletion of Scleraxis-lineage (ScxLin) cells in adult tendon recapitulates age-related decrements in cell density, ECM organization and composition. However, depletion of ScxLin cells improves tendon healing, relative to age-matched wildtype mice, while aging impairs healing. Therefore, we examined whether ScxLin depletion and aging result in comparable shifts in the tendon cell environment and defined the intrinsic programmatic shifts that occur with natural aging, to define the key regulators of age-related healing deficits.

ScxLin cells were depleted in 3M-old Scx-Cre+; Rosa-DTRF/+ mice via diphtheria toxin injections into the hindpaw. Rosa-DTRF/+ mice were used as wildtype (WT) controls. Tendons were harvested from 6M-old ScxLin depleted and WT mice, and 21-month-old (21M) C57Bl/6 mice (aged). FDL tendons (n=6) were harvested for single-cell RNAseq, pooled, collagenase digested, and sorted for single cell capture. Data was processed using Cell Ranger and then aligned to the annotated mouse genome (mm10). Filtering, unsupervised cell clustering, and differential gene expression (DEG) analysis were performed using Seurat.

Following integration and sub-clustering of the tenocyte populations, five distinct subpopulations were observed. In both ScxLin depletion and aging, ‘ECM synthesizers’ and ‘ECM organizers’ populations were lost, consistent with disruptions in tissue homeostasis and altered ECM composition. However, in ScxLin depleted mice retention of a ‘specialized ECM remodeler’ population was observed, while aging tendon cells demonstrated inflammatory skewing with retention of a ‘pro-inflammatory tenocyte population’. In addition, enrichment of genes associated with protein misfolding clearance were observed in aged tenocytes. Finally, a similar inflammatory skewing was observed in aged tendon-resident macrophages, with this skewing not observed in ScxLin depleted tendons.

These data suggest that loss of ‘ECM synthesizer’ populations underpins disruptions in tendon homeostasis. However, retention of ‘specialized remodelers’ promotes enhanced healing (ScxLin depletion), while inflammatory skewing may drive the impaired healing response in aged tendons.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 16 - 16
7 Jun 2023
Thomas A Wilkinson M
Full Access

The documentation of deep infection rates in joint replacement is fraught with multiple difficulties. Deep infections acquired in theatre may present late, but some later presenting deep infections are clearly haematogenous, and not related to surgical management. The effect of Ultra Clean Air on infection rates was published by Charnley in 1972 (CORR,87:167–187). The data is valuable because large numbers of THRs were performed in standard and Ultra Clean theatres, and detailed microbiology of the air was also recorded. No IV antibiotics were used, so only the effect of air quality was studied.

We extracted the data on theatre type and numbers from Table 3, and numbers and intervals from surgery of deep infections from Table 7. Theatre types with 300 air changes per hour and 3.5 CFU/M3 were classified as Ultra Clean. A logistic regression model was used to examine the effect of theatre type and time elapsed after procedure on the probability of becoming infected.

The model suggests that, controlling for time period, Ultra Clean Air is associated with a significantly lower probability of infection, with an OR of 0.30, p = 2.74 × 10−6. The effect is larger earlier post-surgery, but it does persist. The results are best reviewed as a graphic, which shows that Ultra Clean Air clearly affects the deep infection rate for up to four years post-surgery.

Ultra Clean Air reduces infection rates for up to four years post-surgery, so it is safe to assume that infections presenting after this are haematogenous. Ultra Clean Air does not eliminate early deep infection, so some early infections are not related to air quality. It is not practical to undertake widespread detailed retrospective analyses of cases. When monitoring infection rates there needs to be a balance between failing to record infections related to surgical technique and waiting many years to record low numbers of very late presenting problems. We suggest that registries should regard infections documented within three years of surgery as treatment complications.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 82 - 82
7 Nov 2023
Patel V Hayter E Hodgson H Barter R Anakwe R
Full Access

Extended patient waiting lists for assessment and treatment are widely reported for planned elective joint replacement surgery. The development of regionally based Elective Orthopaedic Centres, separate from units that provide acute, urgent or trauma care has been suggested as one solution to provide protected capacity and patient pathways. These centres will adopt protocolised care to allow high volume activity and increased day-case care. We report the plan to establish a new elective orthopaedic centre serving a population of 2.4 million people. A census conducted in 2022 identified that 15000 patients were awaiting joint replacement surgery with predictions for further increases in waiting times

The principle of care will be to offer routine primary arthroplasty surgery for low risk (ASA 1 and 2) patients at a new regional centre. Pre-operative assessment and preparation will be undertaken digitally, virtually and/or in person at local centres close to the where patients live. This requires new and integrated pathways and ways of working. Predicting which patients will require perioperative transfusion of blood products is an important safety and quality consideration for new pathways. We reviewed all cases of hip and knee arthroplasty surgery conducted at our centre over a 12-month period and identified pre-operative patient related predictive factors to allow us to predict the need for the perioperative transfusion of blood products.

We examined patient sex, age, pre-operative haemaglobin and platelet count, use of anti-coagulants, weight and body mass index to allow us to construct the Imperial blood transfusion tool.

We have used the results of our study and the transfusion tool to propose the patient pathway for the new regional elective orthopaedic centre which we present.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_6 | Pages 2 - 2
20 Mar 2023
Brennan C Slevin Z Savaridas T
Full Access

The suprascapular nerve is an ideal target for nerve blockade to alleviate shoulder pain given its widespread innervation to the shoulder girdle. Many techniques have been described. To widen the availability of this treatment we investigate whether an anatomical landmark technique can be easily learned by novice injectors to provide efficacious blockade.

Five injectors were recruited with varying experience; from the novice medical student to an orthopaedic consultant. Five torsos (10 shoulders) were used. A single page of written instruction and illustration of the Dangoisse landmark technique was provided prior to injection of a Thiel embalmed cadaver bilaterally. A pre-mixed injectate with blue dye was used. Cadavers were dissected and the presence or absence of dye staining reported by 3 observers and a consensus agreement reached.

Dissection demonstrated diffuse staining in the suprascapular fossa. 90% of shoulders were found to have adequate staining of the suprascapular nerve directly, or its distal branches, in a manner which would provide adequate anaesthesia. The inter-observer agreement was good (k = 0.73) for staining at the supraspinous fossa and excellent (k=0.87) for staining distally. The technique was easily performed by novice injectors with a 100% success rate.

We demonstrate that this technique is reproducible by a range of clinicians to effectively provide anaesthesia of the SScN. The main risks are ineffective block (10% in this series) and of intravascular injection. Within a resource strained healthcare environment greater uptake of this technique is likely to be of benefit to a wider array of patients.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 76 - 76
23 Jun 2023
Bloch B James P Manktelow A
Full Access

Sound management decisions are critical to outcomes in revision arthroplasty. Aiming to improve outcomes, revision networks facilitate speciality trained, high volume surgeons, share experience and best practice, contributing to decision making within and away from their base hospital. We have reported the early clinical experience of East Midlands Specialist Orthopaedic Network (EMSON). In this paper we report beneficial clinical effects, both demonstrable and unquantifiable supporting the process.

Using the UK HES database of revisions, performed before and after EMSON was established, (April 2011 – March 2018), data from EMSON hospitals were compared to all other hospitals in the same time-period. Primary outcome was re-revision surgery within 1 year. Secondary outcomes were re-revision, complications within first two years and median LOS.

57,621 RTHA and 33,828 RTKA procedures were involved with around 1,485 (2.6%) and 1,028 (3.0%) respectively performed within EMSON. Re-revision THA rates, within 1 year, in EMSON were 7.3% and 6.0% with re-revision knee rates 11.6% and 7.4%, pre- and post-intervention. Re-revision rates in the rest England in the same periods were 7.4% to 6.8% for hips and 11.7% to 9.7% for knees. This constituted a significant improvement in 1-year re-revision rates for EMSON knees. (β = −0.072 (−0.133 to −0.01), p = 0.024). The reduction in hip re-revision did not reach statistical significance. Secondary outcomes showed a significant improvement for 1 and 2-year RTHA complication rates.

Re-revision rates for RTKA and complication rates for RTHA improved significantly after the introduction of EMSON. Other outcomes studied also improved to a greater extent in the network hospitals. While anecdotal experience with networks is positive, the challenge in collating data to prove clinic benefit should not be underestimated. Beyond the formal process, additional communication, interaction, and support has immeasurable benefit in both elective and emergency scenarios.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 80 - 80
4 Apr 2023
Prabhakaran V Hawkswell R Paxton J
Full Access

3D spheroid culture is a bridge between standard 2D cell culture and in vivo research which mimics the physiological microenvironment in scaffold-free conditions. Here, this 3D technique is being investigated as a potential method for engineering bone tissue in vitro. However, spheroid culture can exhibit limitations, such as necrotic core formation due to the restricted access of oxygen and nutrients. It is therefore important to determine if spheroids without a sizeable necrotic core can be produced. This study aims to understand necrotic core formation and cell viability in 3D bone cell spheroids using different seeding densities and media formulations.

Differentiated rat osteoblasts (dRObs) were seeded in three different seeding densities (1×104, 5×104, 1×10 cells) in 96 well U-bottom cell-repellent plates and in three different media i.e., Growth medium (GM), Mineralisation medium 1 (MM1) and MM2. Spheroids were analysed from day 1 to 28 (N=3, n=2). Cell count and viability was assessed by trypan blue method. One way ANOVA and post-hoc Tukey test was performed to compare cell viability among different media and seeding densities. Histological spheroid sections were stained with hematoxylin and eosin (H&E) to identify any visible necrotic core.

Cell number increased from day 1 to 28 in all three seeding densities with a notable decrease in cell viability. 1×104 cells proliferated faster than 5×104 and 1×105 cells and had proportionately similar cell death. The necrotic core area was relatively equivalent between all cell seeding densities. The larger the spheroid size, the larger is the size of the necrotic core.

This study has demonstrated that 3D spheroids can be formed from dRobs at a variety of seeding densities with no marked difference in necrotic core formation. Future studies will focus on utilising the bone cell spheroids for engineering scalable scaffold-free bone tissue constructs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 69 - 69
23 Feb 2023
Morgan S Wall C de Steiger R Graves S Page R Lorimer M
Full Access

The aim of this study was to examine the incidence of obesity in patients undergoing primary total shoulder replacement (TSR) (stemmed and reverse) for osteoarthritis (OA) in Australia compared to the incidence of obesity in the general population.

A 2017-18 cohort of 2,621 patients from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) who underwent TSR, were compared with matched controls from the Australian Bureau of Statistics (ABS) National Health Survey from the same period. The two groups were analysed according to BMI category, sex and age.

According to the 2017-18 National Health Survey, 35.6% of Australian adults are overweight and 31.3% are obese. Of the primary TSR cases performed, 34.2% were overweight and 28.6% were obese. The relative risk of requiring TSR for OA increased with increasing BMI category. Class-3 obese females, aged 55-64, were 8.9 times more likely to require TSR compared to normal weight counterparts. Males in the same age and BMI category were 2.5 times more likely. Class-3 obese patients underwent TSR 4 years (female) and 7 years (male) sooner than their normal weight counterparts.

Our findings suggest that the obese population is at risk for early and more frequent TSR for OA. Previous studies demonstrate that obese patients undergoing TSR also exhibit increased risks of longer operative times, higher superficial infection rates, higher periprosthetic fracture rates, significantly reduced post-operative forward flexion range and greater revision rates.

Obesity significantly increases the risk of requiring TSR. To our knowledge this is the first study to publish data pertaining to age and BMI stratification of TSR Societal efforts are vital to diminish the prevalence and burden of obesity related TSR.

There may well be reversible pathophysiology in the obese population to address prior to surgery (adipokines, leptin, NMDA receptor upregulation). Surgery occurs due to recalcitrant or increased pain despite non-op Mx.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 83 - 83
7 Nov 2023
Almeida R Pietrzak J Mokete L Sikhauli N
Full Access

Total Joint Arthroplasty (TJA) is a successful orthopaedic procedure allowing dramatic clinical and functional improvements. Globally, there's been an increase in demand and performed cases associated with an increase in complications. Subsequently, focus on the prevention of complications has become important worldwide. The incidence of venous-thrombolic events (VTE) despite great attention has not diminished despite much investigation. A balance between efficacy and safety from the available agents is essential. Low molecular weight heparin (LMWH) has been commonly used, but oral anti-coagulants have become more popular. The aim of this study was to assess the adherence LMWH and the effectiveness and safety of preventing VTE in post-operative arthroplasty patients in a South African setting.

We conducted a prospective cohort study that included hip and knee, primary and revision, arthroplasty patients who received thromboprophylaxis with one daily injection of LMWH for 14 days post discharge. Patients who omitted 1 or more doses during the follow up period were classified as “non adherent”. A questionnaire was used at follow up visits at least 6 weeks post-operatively.

100 consecutive patients were followed up. The mean age of patients was 63.45 years. There were 68 % female patients. There was a 92% compliance rate. 60 % of patients had the injection administered by a family member, 38 % administered it themselves and 2 % had the injection administered by health professionals. Venous thromboembolic events were confirmed in 5 % at 7.86 days after surgery. Three patients had persistent wound drainage after surgery, however, none required reoperation or readmission.

Compliance with LMWH is high and is comparable with oral agents. It is effective in preventing VTE and safe with regards to bleeding and wound complications in a South African setting. Patient education regarding medications may improve compliance of the medication.


Hip fractures are a major cause of morbidity and mortality, and malnutrition is a critical determinant of these outcomes. This systematic review and meta-analysis aims to determine whether oral nutritional supplementation (ONS) improves postoperative outcomes in older patients with hip fracture. An electronic systematic literature search was conducted in August 2022 using four databases. Randomized trials documenting ONS in older patients with hip fracture (aged 50+) were included. Two reviewers evaluated study eligibility, data extraction and assessed study quality.

There were 812 studies identified of which 18 studies involving 1,512 patients met the inclusion criteria. The overall meta-analysis demonstrates that ONS was associated with a significant risk reduction in infective complications (odds ratio (OR) 0.54, 95%CI 0.38, 0.76), pressure ulcers (OR 0.54, 95%CI 0.33, 0.88), total complications rate (OR 0.57, 95%CI 0.42, 0.79). Length of hospital stay (LOS) was also significantly reduced (weighted mean difference (WMD) −2.01, 95%CI −3.52, −0.5), particularly in the rehabilitation LOS (WMD −4.17, 95%CI −7.08, −1.26). There was a tendency towards lower risk in mortality (OR 0.93, 95%CI 0.62, 1.4) and readmission (OR 0.52, 95%CI 0.16, 1.73), though statistical significance was not achieved. The overall compliance to ONS ranged from 64.1% to 100%, but no factors influencing compliance were identified.

This systematic review was the first to quantitatively demonstrate that ONS reduces half the risk of infective complications, pressure ulcers, total complication rate and reduces LOS. ONS should be a regular and integrated part of medical practice, especially given that the compliance to ONS is acceptable.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 18 - 18
7 Jun 2023
Schapira B Spanoudakis E Jaiswal P Patel A
Full Access

Surgical trainees are finding it increasingly more challenging to meet operative requirements and coupled with the effects of COVID-19, we face a future of insufficiently trained surgeons. As a result, virtual reality (VR) simulator training has become more prevalent and whilst more readily accepted in certain arthroscopic fields, its use in hip arthroscopy (HA) remains novel. This project aimed to validate VR high-fidelity HA simulation and assess its functional use in arthroscopic training.

Seventy-two participants were recruited to perform two basic arthroscopic tasks on a VR HA simulator, testing hip anatomy, scope manipulation and triangulation skills. They were stratified into novice (39) and experienced (33) groups based on previous arthroscopy experience. Metric parameters recorded from the simulator were used to assess construct validity. Face validity was evaluated using a Likert-style questionnaire. All recordings were reviewed by 2 HA experts for blinded ASSET score assessment.

Experienced participants were significantly faster in completing both tasks compared with novice participants (p<0.001). Experienced participants damaged the acetabular and femoral cartilage significantly less than novice participants (p=0.011) and were found to have significantly reduced path length of both camera and instrument across both tasks (p=0.001, p=0.007), demonstrating significantly greater movement economy. Total ASSET scores were significantly greater in experienced participants compared to novice participants (p=0.041) with excellent correlation between task time, cartilage damage, camera and instrument path length and corresponding ASSET score constituents. 62.5% of experienced participants reported a high degree of realism in all facets of external, technical and haptic experience with 94.4% advising further practice would improve their arthroscopic skills. There was a relative improvement of 43% in skill amongst all participants between task 1 and 2 (p<0.001).

This is the largest study to date validating the use of simulation in HA training. These results confirm significant construct and face validity, excellent agreement between objective measures and ASSET scores, significant improvement in skill with continued use and recommend VR simulation to be a valuable asset in HA training for all grades.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_6 | Pages 5 - 5
20 Mar 2023
Gupta S Sadczuk D Riddoch F Oliver W Davidson E White TO Keating JF Scott CEH
Full Access

We aimed to determine the rate of and risk factors for post-traumatic osteoarthritis (PTOA) and total knee arthroplasty (TKA) requirement after operative management of tibial plateau fractures (TPF) in older adults.

We conducted a retrospective cohort study of 182 operatively managed TPFs in 180 patients ≥60 years old over a 12-year period with minimum follow up 1 year. Data including patient demographics, clinical frailty scores, mechanism of injury, management, reoperation and mortality were recorded. Radiographs were reviewed for: Schatzker classification; pre-existing knee osteoarthritis (KOA); severe joint depression >15mm; and development of PTOA. Kaplan Meier survival analysis was performed. Regression analysis was used to identify risk factors for radiographic indication for TKA and actual TKA.

Forty-seven percent were Schatzker II fractures. Radiographic KOA was present at fracture in 32.6%. Fracture fixation was performed in 95.6% cases and acute TKA in 4.4%. Thirteen patients underwent late TKA (7.5%). At five-years, 11.8% (6.0-16.7 95% CI) had required TKA and 20.9% (14.4-27.4 95% CI) had a radiographic indication for TKA. Severe joint depression and pre-existing KOA were associated with worse survival for endpoints radiographic indication for TKA and actual TKA. Severe joint depression (HR 2.49(1.35-4.61 95% CI), p=0.004), pre-existing KOA (HR 2.23(1.17-4.23), p=0.015) and inflammatory arthropathy (HR 2.4(1.04-5.53), p=0.039) were independently associated with radiographic indication for TKA.

In conclusion, severe joint depression and pre-existing arthritis are independent risk factors for both severe PTOA and TKA after TPFs in older adults. These features should be considered as an indication for primary management with acute TKA.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 79 - 79
23 Jun 2023
Paprosky W Gerlinger T
Full Access

Previous reports on the outcomes of isolated head and liner exchange in revision total hip arthroplasty have found high rates of instability following these surgeries. Most reports have studied constructs using ≤28mm femoral heads. The purpose of this study was to determine if modern techniques with the use of larger head sizes can improve the rate of instability after head and liner exchange.

We identified 138 hips in 132 patients who underwent isolated head and liner exchange for polyethylene wear/osteolysis (57%), acute infection (27%), metallosis (13%), or other (2%). All patients underwent revision with either 32mm (23%), 36mm (62%), or 40mm (15%) diameter heads. Crosslinked polyethylene was used in all revisions. Lipped and/or offset liners were used in 104 (75%) hips. Average follow up was 3.5 (1.0–9.1) years. Statistical analyses were performed with significance set at p<0.05.

Revision-free survivorship for any cause was 94.6% and for aseptic causes was 98.2% at 5 years. 11 (8%) hips experienced a complication with 7 (5%) hips requiring additional revision surgery. Following revision, 4 (3%) hips experienced dislocation, 5 (4%) hips experienced infection, and 1 (1%) hip was revised for trunnionosis. No demographic or surgical factors significantly affected outcomes.

Our study shows that isolated head and liner exchange using large femoral heads and modern liners provides for better stability than previous reports. The most common complication was infection. We did not identify specific patient, surgical or implant factors that reduced the risk of instability or other complication.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 86 - 86
7 Nov 2023
Berberich C
Full Access

Periprosthetic joint infection (PJI) in geriatric and/or multimorbid patients is an enormous challenge for orthopaedic surgeons. Revision procedures have also been demonstrated to expose patients to higher infection risks. Prior patient stratification according to presumed infection risks, followed by a more potent local antibiotic prophylaxis protocol with selective use of DALBC, is an interesting strategy to decrease the burden of PJI in high risk patients.

The PubMed & EMBASE databases were screened for publications pertaining to the utilization of DALBC in cement for infection prophylaxis & prosthesis fixation. 6 preclinical & 7 clinical studies were identified which met the inclusion criteria and were stratified by level of clinical evidence. Only those studies were considered which compared the PJI outcome in the DALBC vs the SALBC group.

DALBC have been shown to exert a much stronger and longer lasting inhibition of biofilm formation on many PJI relevant bacteria (gram-positive and gram-negative pathogens) than single gentamicin-only containing cements.

DALBC use (COPAL G+C) in the intervention arm of 7 clinical studies has led to a significant reduction of PJI cases in a) cemented hemiarthroplasty procedures (3 studies, evidence level I and III), in b) cemented septic revision surgeries (2 studies, evidence level III), in c) cemented aseptic knee revisions (1 study, evidence level III) and in d) cemented primary arthroplasties in multi-morbid patients (1 study, evidence level III-IV). These benefits were not associated with more systemic side effects or a higher prevalence of broad antimicrobial resistancies.

Use of DALBC is likely to be more effective in preventing PJI in high risk patients. The preliminar findings so far may encourage clinicians to consolidate this hypothesis on a wider clinical range.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 95 - 95
10 Feb 2023
Mowbray J Frampton C Maxwell R Hooper G
Full Access

Cementless fixation is an alternative to cemented unicompartmental knee replacement (UKR), with several advantages over cementation. This study reports on the 15-year survival and 10-year clinical outcomes of the cementless Oxford unicompartmental knee replacement (OUKR).

This prospective study describes the clinical outcomes and survival of first 693 consecutive cementless medial OUKRs implanted in New Zealand.

The sixteen-year survival was 89.2%, with forty-six knees being revised. The commonest reason for revision was progression of arthritis, which occurred in twenty-three knees, followed by primary dislocation of the bearing, which occurred in nine knees. There were two bearing dislocations secondary to trauma and a ruptured ACL, and two tibial plateau fractures. There were four revisions for polyethylene wear. There were four revisions for aseptic tibial loosening, and one revision for impingement secondary to overhang of the tibial component. There was only one revision for deep infection and one revision where the indication was not stated. The mean OKS improved from 23.3 (7.4 SD) to 40.59 (SD 6.8) at a mean follow-up of sixteen years.

In conclusion, the cementless OUKR is a safe and reproducible procedure with excellent sixteen-year survival and clinical outcomes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 84 - 84
4 Apr 2023
Gehweiler D Pastor T Beeres F Kastner P Migliorini F Nebelung S Scaglioni M Souleiman F Link B Babst R Gueorguiev B Knobe M
Full Access

Helical plates potentially bypass the medial neurovascular structures of the thigh. Recently, two plate designs (90°- and 180°-helix) proved similar biomechanically behaviour compared to straight plates. Aims of this study were: (1) Feasibility of MIPO-technique with 90°- and 180°-helical plates on the femur, (2) Assessment of distances to adjacent anatomical structures at risk, (3) Comparison of these distances to using medial straight plates instead, (4) Correlation of measurements performed in anatomic dissection with CT-angiography.

MIPO was performed in ten cadaveric femoral pairs using either a 90°-helical 14-hole-LCP (Group1) or a 180°-helical 15-hole-LCP-DF (Group2). CT angiography was used to evaluate the distances between the plates and the femoral arteries as well as the distances between the plates and the perforators. Subsequently, the specimens were dissected, and the distances were determined again manually. Finally, all helical plates were removed, and all measurements were repeated after application of straight medial plates (Group3).

Closest overall distances between plates and femoral arteries were 15 mm (11 − 19 mm) in Group1, 22 mm (15 − 24 mm) in Group2 and 6 mm (1 − 8 mm) in Group3 with a significant difference between Group1 and Group3 (p < 0.001). Distances to the nearest perforators were 24 mm (15 − 32 mm) in Group1 and 2 mm (1 − 4 mm) in Group2. Measurement techniques (visual after surgery and CT-angiography) demonstrated a strong correlation of r2 = 0.972 (p < 0.01).

MIPO with 90°- and 180°-helical plates is feasible and safe. Attention must be paid to the medial neurovascular structures with 90°-helical implants and to the proximal perforators with 180°-helical implants. Helical implants can avoid medial neurovascular structures compared to straight plates although care must be taken during their distal insertion. Measurements during anatomical dissection correlate with CT-angiography.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 73 - 73
23 Feb 2023
Hunter S Baker J
Full Access

Acute Haematogenous Osteomyelitis (AHO) remains a cause of severe illness among children. Contemporary research aims to identify predictors of acute and chronic complications. Trends in C-reactive protein (CRP) following treatment initiation may predict disease course. We have sought to identify factors associated with acute and chronic complications in the New Zealand population.

A retrospective review of all patients <16 years with presumed AHO presenting to a tertiary referral centre between 2008-2018 was performed. Multivariate was analysis used to identify factors associated with an acute or chronic complication. An “acute” complication was defined as need for two or more surgical procedures, hospital stay longer than 14-days, or recurrence despite IV antibiotics. A “chronic” complication was defined as growth or limb length discrepancy, avascular necrosis, chronic osteomyelitis, pathological fracture, frozen joint or dislocation. 151 cases met inclusion criteria. The median age was 8 years (69.5% male). Within this cohort, 53 (34%) experienced an acute complication and 18 (12%) a chronic complication.

Regression analysis showed that contiguous disease, delayed presentation, and failure to reduce CRP by 50% at day 4/5 predicted an acutely complicated disease course. Chronic complication was predicted by need for surgical management and failed CRP reduction by 50% at day 4/5. We conclude that CRP trends over 96 hours following commencement of treatment differentiate patients with AHO likely to experience severe disease.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 89 - 89
7 Nov 2023
Greenwood K Molepo M Mogale N Keough N Hohmann E
Full Access

The posterior compartments of the knee are currently accessed arthroscopically through anterior, posteromedial or posterolateral portals. A direct posterior portal to access the posterior compartments has been overlooked due to a perceived high-risk of injury to the popliteal neurovascular structures. Therefore, this study aimed to investigate the safety and accessibility of a direct posterior portal into the knee.

This cross-sectional study comprised a sample of 95 formalin-embalmed cadaveric knees and 9 fresh-frozen knees. Cannulas were inserted into the knees, 16mm from the vertical plane between the medial epicondyle of the femur and medial condyle of the tibia and 8 and 14mm (females and males respectively) from the vertical plane connecting the lateral femoral epicondyle and lateral tibial condyle. Landmarks were identified in full extension and cannula insertion was completed with the formalin-embalmed knees in full extension and the fresh-frozen in 90-degree flexion. Posterior aspects of the knees were dissected from superficial to deep, to assess potential damage caused by cannula insertion. Incidence of neurovascular damage was 9.6% (n=10); 0.96% medial cannula and 8.7% lateral cannula. The medial cannula damaged one small saphenous vein (SSV) in a male specimen. The lateral cannula damaged one SSV, 7 common fibular nerves (CFN) and both CFN and lateral cutaneous sural nerve in one specimen. All incidences of damage occurred in formalin-embalmed knees. The posterior horns of the menisci were accessible in all specimens.

A medial-lying direct posterior portal into the knee is safe in 99% of occurrences. The lateral-lying direct posterior portal is of high risk to the CFN.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 75 - 75
23 Feb 2023
Lau S Kanavathy S Rhee I Oppy A
Full Access

The Lisfranc fracture dislocation of the tarsometatarsal joint (TMTJ) is a complex injury with a reported incidence of 9.2 to 14/100,000 person-years. Lisfranc fixation involves dorsal bridge plating, transarticular screws, combination or primary arthrodesis. We aimed to identify predictors of poor patient reported outcome measures at long term follow up after operative intervention.

127 patients underwent Lisfranc fixation at our Level One Trauma Centre between November 2007 and July 2013. At mean follow-up of 10.7 years (8.0-13.9), 85 patients (66.92%) were successfully contacted. Epidemiological data including age, gender and mechanism of injury and fracture characteristics such as number of columns injured, direction of subluxation/dislocation and classification based on those proposed by Hardcastle and Lau were recorded. Descriptive analysis was performed to compare our primary outcomes (AOFAS and FFI scores). Univariate analysis and multivariate regression analysis was done adjusted for age and sex to compare the entirety of our data set. p<0.05 was considered significant. The primary outcomes were the American Orthopaedic Foot and Ankle Society (AOFAS) Midfoot Score and the Foot Function Index (FFI).

The number of columns involved in the injury best predicts functional outcomes (FFI, P <0.05, AOFAS, p<0.05) with more columns involved resulting in poorer outcomes. Functional outcomes were not significantly associated with any of the fixation groups (FFI, P = 0.21, AOFAS, P = 0.14). Injury type by Myerson classification systems (FFI, P = 0.17, AOFAS, P = 0.58) or open versus closed status (FFI, P = 0.29, AOFAS, P = 0.20) was also not significantly associated with any fixation group.

We concluded that 10 years post-surgery, patients generally had a good functional outcome with minimal complications. Prognosis of functional outcomes is based on number of columns involved and injured. Sagittal plane disruption, mechanism and fracture type does not seem to make a difference in outcomes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 4 - 4
10 Feb 2023
Sundaram A Hockley E Hardy T Carey Smith R
Full Access

Rates of prosthetic joint infection in megaprostheses are high. The application of silver ion coating to implants serves as a deterrent to infection and biofilm formation.

A retrospective review was performed of all silver-coated MUTARS endoprosthetic reconstructions (SC-EPR) by a single Orthopaedic Oncology Surgeon. We examined the rate of component revision due to infection and the rate of infection successfully treated with antibiotic therapy. We reviewed overall revision rates, sub-categorised into the Henderson groupings for endoprosthesis modes of failure (Type 1 soft tissue failure, Type 2 aseptic loosening, Type 3 Structural failure, Type 4 Infection, Type 5 tumour progression).

283 silver-coated MUTARS endoprosthetic reconstructions were performed for 229 patients from October 2012 to July 2022. The average age at time of surgery was 58.9 years and 53% of our cohort were males. 154 (71.3%) patients underwent SC-EPR for oncological reconstruction and 32 (14.8%) for reconstruction for bone loss following prosthetic joint infection(s). Proximal femur SC-EPR (82) and distal femur (90) were the most common procedures. This cohort had an overall revision rate of 21.2% (60/283 cases). Component revisions were most commonly due to Type 4 infection (19 cases), Type 2 aseptic loosening/culture negative disease (15 cases), and Type 1 dislocation/soft tissue (12 cases).

Component revision rate for infection was 6.7% (19 cases). 15 underwent exchange of implants and 4 underwent transfemoral amputation due to recalcitrant infection and failure of soft tissue coverage. This equates to a limb salvage rate of 98.3%. The most common causative organisms remain staphylococcus species (47%) and polymicrobial infections (40%).

We expand on the existing literature advocating for the use of silver-coated endoprosthetic reconstructions. We provide insights from the vast experience of a single surgeon when addressing patients with oncological and bone loss-related complex reconstruction problems.


The Lubinus SP II is an anatomical femoral stem with high survivorship levels notably described in the Swedish Arthroplasty Register. As the clinical and economic burden of revision total hip arthroplasty (THA) and periprosthetic fracture (PPF) continues to increase, it has been suggested that use of anatomical stems may facilitate more uniform cement mantles and improve implant survival. The primary aim of this study was to determine the long-term survivorship and PPF rate of the Lubinus SP II 150mm stem in a single UK centre.

Between January 2007 and April 2012, 1000 consecutive THAs were performed using the Lubinus SP II femoral stem in our institution. Patient demographics and operative details were collected in a prospective arthroplasty database. Patient records and national radiographic archives were then reviewed at a mean of 12.3 years (SD 1.3) following surgery to identify occurrence of subsequent revision surgery, dislocation or periprosthetic fracture.

Mean patient age at surgery was 69.3 years (SD 10.1, 24–93 years). There were 634 women (63%). Osteoarthritis was the operative indication in 974 patients (97%). There were 13 revisions in total (4 for recurrent dislocation, 3 for infection, 6 for acetabular loosening) and 16 dislocations (1.6%). Stem survivorship at 10 years was 99.6% (95 % confidence interval [CI], 99.5%–99.7%) and at 15 years was 98.8% (98.7%–98.9%). The 15-year stem survival for aseptic loosening was 100%. Analysis of all cause THA failure demonstrated a survivorship of 99.1% (99.0%–99.3%) at 10 years and 98.2% (98.1%–98.3%) at 15 years. There were 4 periprosthetic fractures in total (0.4%) at mean 12.3 year follow-up.

The Lubinus SP II stem demonstrated excellent survivorship, low dislocation rates and negligible PPF rates up to 15 years following primary THA. Use of anatomical stems such as the Lubinus SPII would appear to be a wise clinical and economic investment for patients and healthcare systems alike.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_14 | Pages 6 - 6
10 Oct 2023
Burt J Jabbal M Moran M Jenkins P Walmsley P Clarke J
Full Access

The aim of this study was to measure the effect of hospital case volume on the survival of revision total hip arthroplasty (RTHA).

This is a retrospective analysis of Scottish Arthroplasty Project data, a nationwide audit which prospectively collects data on all arthroplasty procedures performed in Scotland. The primary outcome was RTHA survival at ten years. The primary explanatory variable was the effect of hospital case volume per year on RTHA survival. Kaplan-Meier survival curves were plotted with 95% confidence intervals (CIs) to determine the lifespan of RTHA. Multivariate Cox proportional hazards were used to estimate relative revision risks over time. Hazard ratios (HRs) were reported with 95% CI, and p-value < 0.05 was considered statistically significant.

From 1999 to 2019, 13,020 patients underwent RTHA surgery in Scotland (median age at RTHA 70 years (interquartile range (IQR) 62 to 77)). In all, 5,721 (43.9%) were female, and 1065 (8.2%) were treated for infection. 714 (5.5%) underwent a second revision procedure. Co-morbidity, younger age at index revision, and positive infection status were associated with need for re-revision (p<0.001). The ten-year survival estimate for RTHA was 93.3% (95% CI 92.8 to 93.8). Adjusting for sex, age, surgeon volume, and indication for revision, high hospital case volume was not significantly associated with lower risk of re-revision (HR1, 95% CI 1.00 to 1.00, p 0.073)).

The majority of RTHA in Scotland survive up to ten years. Increasing yearly hospital case volume cases is not independently associated with a significant risk reduction of re-revision.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_6 | Pages 12 - 12
20 Mar 2023
Dixon JE Rankin IA Diston N Goffin J Stevenson I
Full Access

This study aimed to assess the outcomes of patients with complex rib fractures undergoing operative or non-operative management at our center over a six-year time period.

Retrospective analysis was performed to identify all patients with complex rib fractures at our center from May 2016 to September 2022. Outcome measures included mechanical ventilation, tracheostomy, pneumonia, and mortality at one year.

388 patients with complex rib fractures were identified. 37 (10%) patients fulfilled criteria for surgical management and underwent rib fracture fixation; 351 patients were managed non-operatively with anaesthetic block or analgesia alone. The fixation group had a significantly higher proportion of patients with flail chest (30 (81%) vs 94 (27%), p<0.001) and were significantly more likely to require ICU admission (30 (81%) vs. 16 (5%), p<0.001) than the non-operative group. At one year follow-up, no significant differences were seen for mortality between these groups (1 (3%) vs. 27 (7%), p=0.276).

Of the surgical management group, those that underwent fixation <72 hours post injury were significantly less likely to develop pneumonia than those who were delayed >72 hours (2 (18%) vs 15 (58%), p=0.038), with downward trends noted for ICU length of stay (6 vs 10 days, p=0.140) and duration of mechanical ventilation (5 vs 8 days, p=0.177); no significant differences were seen for tracheostomy (3 vs. 5, p=0.588) or mortality (0 vs 1, p=0.856).

Surgical fixation of complex rib fractures improves outcomes in selected patient groups. Early surgical fixation led to reduced rates of pneumonia and may improve other outcome measures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 1 - 1
4 Apr 2023
Buldu M Sacchetti F Yasen A Furtado S Parisi V Gerrand C
Full Access

Primary malignant bone and soft tissue tumours often occur in the lower extremities of active individuals including children, teenagers and young adults. Survivors routinely face long-term physical disability. Participation in sports is particularly important for active young people but the impact of sarcoma treatment is not widely recognised and clinicians may be unable to provide objective advice about returning to sports. We aimed to identify and summarise the current evidence for involvement in sports following treatment of lower limb primary malignant bone and soft tissue tumours.

A comprehensive search strategy was used to identify relevant studies combining the main concepts of interest: (1) Bone/Soft Tissue Tumour, (2) Lower Limb, (3) Surgical Interventions and (4) Sports. Studies were selected according to eligibility criteria with the consensus of three authors. Customised data extraction and quality assessment tools were used.

22 studies were selected, published between 1985 – 2020, and comprising 1005 patients. Fifteen studies with data on return to sports including 705 participants of which 412 (58.4%) returned to some form of sport at a mean follow-up period of 7.6 years. Four studies directly compared limb sparing and amputation; none of these were able to identify a difference in sports participation or ability.

Return to sports is important for patients treated for musculoskeletal tumours, however, there is insufficient published research to provide good information and support for patients. Future prospective studies are needed to collect better pre and post-treatment data at multiple time intervals and validated clinical and patient sports participation outcomes such as type of sports participation, level and frequency and a validated sports specific outcome score, such as UCLA assessment. In particular, more comparison between limb sparing and amputation would be welcome.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 78 - 78
23 Feb 2023
Bolam S Tay M Zaidi F Sidaginamale R Hanlon M Munro J Monk A
Full Access

The introduction of robotics for total knee arthroplasty (TKA) into the operating theatre is often associated with a learning curve and is potentially associated with additional complications. The purpose of this study was to determine the learning curve of robotic-assisted (RA) TKA within a multi-surgeon team.

This prospective cohort study included 83 consecutive conventional jig-based TKAs compared with 53 RA TKAs using the Robotic Surgical Assistant (ROSA) system (Zimmer Biomet, Warsaw, Indiana, USA) for knee osteoarthritis performed by three high-volume (> 100 TKA per year) orthopaedic surgeons. Baseline characteristics including age, BMI, sex and pre-operative Kellgren-Lawrence grade were well-matched between the conventional and RA TKA groups. Cumulative summation (CUSUM) analysis was used to assess learning curves for operative times for each surgeon. Peri-operative and delayed complications were reviewed.

The CUSUM analysis for operative time demonstrated an inflexion point after 5, 6 and 15 cases for each of the three surgeons, or 8.7 cases on average. There were no significant differences (p = 0.53) in operative times between the RA TKA learning (before inflexion point) and proficiency (after inflexion point) phases. Similarly, the operative times of the RA TKA group did not differ significantly (p = 0.92) from the conventional TKA group. There was no discernible learning curve for the accuracy of component planning using the RA TKA system. The average length of post-operative follow-up was 21.3 ± 9.0 months. There was no significant difference (p > 0.99) in post-operative complication rates between the groups.

The introduction of the RA TKA system was associated with a learning curve for operative time of 8.7 cases. Operative times between the RA TKA and conventional TKA group were similar. The short learning curve implies this RA TKA system can be adopted relatively quickly into a surgical team with minimal risks to patients.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 102 - 102
10 Feb 2023
White J Wadhawan A Min H Rabi Y Schmutz B Dowling J Tchernegovski A Bourgeat P Tetsworth K Fripp J Mitchell G Hacking C Williamson F Schuetz M
Full Access

Distal radius fractures (DRFs) are one of the most common types of fracture and one which is often treated surgically. Standard X-rays are obtained for DRFs, and in most cases that have an intra-articular component, a routine CT is also performed. However, it is estimated that CT is only required in 20% of cases and therefore routine CT's results in the overutilisation of resources burdening radiology and emergency departments. In this study, we explore the feasibility of using deep learning to differentiate intra- and extra-articular DRFs automatically and help streamline which fractures require a CT.

Retrospectively x-ray images were retrieved from 615 DRF patients who were treated with an ORIF at the Royal Brisbane and Women's Hospital. The images were classified into AO Type A, B or C fractures by three training registrars supervised by a consultant. Deep learning was utilised in a two-stage process: 1) localise and focus the region of interest around the wrist using the YOLOv5 object detection network and 2) classify the fracture using a EfficientNet-B3 network to differentiate intra- and extra-articular fractures.

The distal radius region of interest (ROI) detection stage using the ensemble model of YOLO networks detected all ROIs on the test set with no false positives. The average intersection over union between the YOLO detections and the ROI ground truth was Error! Digit expected.. The DRF classification stage using the EfficientNet-B3 ensemble achieved an area under the receiver operating characteristic curve of 0.82 for differentiating intra-articular fractures.

The proposed DRF classification framework using ensemble models of YOLO and EfficientNet achieved satisfactory performance in intra- and extra-articular fracture classification. This work demonstrates the potential in automatic fracture characterization using deep learning and can serve to streamline decision making for axial imaging helping to reduce unnecessary CT scans.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 92 - 92
4 Apr 2023
Li S Ding Y Wu C Lin S Wen Z
Full Access

For patients who took joint replacement, one of the complications, aseptic joint loosening, could cause a high risk of revision surgery. Studies have shown that MSCs have the ability of homing and differentiating, and also have highly effective immune regulation and anti-inflammatory effects. However, few studies had focused on the stem cells in preventing the occurrence and development of aseptic loosening. In this research, we aimed to clarify whether human umbilical cord mesenchymal stem cells could inhibited the aseptic joint loosening caused by wear particles.

A Cranial osteolysis mice model was established on mice to examine the effect of hUC-MSCs on the Titanium particles injection area through micro-CT. The amount of stem cells injected was 2 × 10 5 cells. One week later, the mouse Cranial were obtained for micro-CT scan, and then stained with HE analysis immunohistochemical analysis of TNF-α, CD68, CCL3 and Il-1β.

All mice were free of fever and other adverse reactions, and there was no death occurred. Titanium particles caused the osteolysis at the mice cranial, while local injection of hUC-MSCs did inhibit the cranial osteolysis, with a lower BV/TV and a higher porosity. Immunohistochemical results suggested that the expression of TNF-α, CD68, CCL3 and Il-1β in the cranial in Titanium particles mice increased significantly, but was significantly reduced in mice injected with hUC-MSCs. The inhibited CD68 expression indicated that the number of macrophage was lower, which might be a result of the inhibition of CCL3.

According to the studies above, HUC-MSCs treatment of mouse cranial osteolysis model can significantly reduce osteolysis, inhibit macrophage recruitment, alleviate inflammatory response, without causing adverse reactions. It may become a promising treatment of aseptic joint loosening.


The current study aims to compare the clinico radiological outcomes between Non-Fusion Anterior Scoliosis (NFASC) Correction and Posterior Spinal Fusion (PSF) for Lenke 5 curves at 2 years follow up.

Methods:38 consecutive Lenke 5 AIS patients treated by a single surgeon with NFASC (group A) or PSF (group B) were matched by age, Cobb's angle, and skeletal maturity. Intraoperative blood loss, operative time, LOS, coronal Cobbs, and SRS22 scores at 2 years were compared. Flexibility was assessed by modified Schober's test. Continuous variables were compared using student t-tests and categorical variables were compared using chi-square.

The cohort included 19 patients each in group A and B . Group A had M:F distribution of 1:18 while group B had 2:17. The mean age in group A and group B were 14.8±2.9 and 15.3±3.1 years respectively. The mean follow-up of patients in groups A and B were 24.5±1.8 months and 27.4±2.1 months respectively. Mean pre-op thoracolumbar/lumbar (TL/L) cobbs for group A and group B were 55°±7° and 57.5°±8° respectively. At two years follow up, the cobbs for group A and B were 18.2°±3.6° and 17.6°±3.5° respectively (p=0.09). The average operating time for groups A and B were 169±14.2 mins and 219±20.5 mins respectively (p<0.05). The average blood loss of groups A and B were 105.3±15.4 and 325.3±120.4 respectively (p<0.05). The average number of instrumented vertebra between groups A and B were 6.2 and 8.5 respectively (p<0.05). The average LOS for NFASC and PSF was 3.3±0.9 days and 4.3±1.1 days respectively (p<0.05). No statistically significant difference in SRS 22 score was noted between the two groups. No complications were recorded.

Our study shows no significant difference in PSF and NFASC in terms of Cobbs correction and SRS scores, but the NFASC group had significantly reduced blood loss, operative time, and fewer instrumented levels. NFASC is an effective alternative technique to fusion to correct and stabilize Lenke 5 AIS curves with preservation of spinal motion.


Long femoral nails for neck of femur fractures and prophylactic fixation have a risk of anterior cortex perforation. Previous studies have demonstrated the radius of curvature (ROC) of a femoral nail influencing the finishing point of a nail and the risk of anterior cortex perforation. This study aims to calculate a patients femoral ROC using preoperative XR and CT and therefore nail finishing position.

We conducted a retrospective study review of patients with long femoral cephalomedullary nailing for proximal femur fractures (OTA/AO 31(A) and OTA/AO 32) or impending pathological fractures at a level 1 trauma centre between January 1, 2015 and December 31, 2020 with both full length lateral X-ray and CT imaging. Femoral ROC was calculated on both imaging modalities. Outcomes measured including nail finishing position, anterior cortex encroachment and impingement. The mean femoral ROC was 1026mm on CT and 1244mm on XR. CT femoral ROC strongly correlated with nail finishing point with a spearmans coefficient of 0.77. Additionally, femurs with a ROC <1000mm were associated with a higher risk of anterior encroachment (OR 6.12) and femurs with a ROC <900mm were associated with a higher risk of anterior cortex impingement (OR 6.47).

To our knowledge this is the first study to compare a measured femoral ROC to nail finishing position. The use of CT to measure femoral ROC and to a lesser extent XR was able to predict both nail finishing position and risk of anterior cortex encroachment. Preoperative XRs and CTs were able to identify patients with a small femoral ROC. This predicted patients at risk of anterior cortex impingement, anterior cortex encroachment and nail finishing position. We may be able to select femoral nails that resemble the native femoral ROC and mitigate the risk of anterior cortex perforation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 28 - 28
11 Apr 2023
Wither C Lawton J Clarke D Holmes E Gale L
Full Access

Range of Motion (ROM) assessments are routinely used during joint replacement to evaluate joint stability before, during and after surgery to ensure the effective restoration of patient biomechanics. This study aimed to quantify axial torque in the femur during ROM assessment in total hip arthroplasty to define performance criteria against which hip instruments can be verified. Longer term, this information may provide the ability to quantitatively assess joint stability, extending to quantitation of bone preparation and quality.

Joint loads measured with strain-gaged instruments in five cadaveric femurs prepared using posterior approach were analysed. Variables such as surgeon-evaluator, trial offset and specimen leg and weight were used to define 13 individual setups and paired with surgeon appraisal of joint tension for each setup. Peak torque loads were then identified for specific motions within the ROM assessment.

The largest torque measured in most setups was observed during maximum extension and external rotation of the joint, with a peak torque of 13Nm recorded in a specimen weighing 98kg. The largest torque range (19.4Nm) was also recorded in this specimen. Other motions within the trial reduction showed clear peaks in applied torque but with lower magnitude. Relationships between peak torque, torque range and specimen weight produced an R2 value greater than 0.65.

The data indicated that key influencers of torsional loads during ROM were patient weight, joint tension and limb motion. This correlation with patient weight should be further investigated and highlights the need for population representation during cadaveric evaluation. Although this study considered a small sample size, consistent patterns were seen across several users and specimens. Follow-up studies should aim to increase the number of surgeon-evaluators and further vary specimen size and weight. Consideration should also be given to alternative surgical approaches such as the Direct Anterior Approach.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 29 - 29
10 Feb 2023
Gupta A Jomaa M Ker A Hollman F Singh N Maharaj J Cutbush K
Full Access

Massive posterosuperior cuff tears (mRCT) retracted to the glenoid are surgically challenging and often associated with high retear rates. Primary repair is a less-favourable option and other salvage procedures such as SCR and tendon transfers are used. This study presents clinical and radiological outcomes of muscle advancement technique for repair of mRCT.

Sixty-one patients (mean age 57±6, 77% males and 23% females) (66 shoulders) underwent all-arthroscopic rotator cuff repair that included supraspinatus and infraspinatus subperiosteal dissection off scapular bony fossae, lateral advancement of tendon laminae, and tension-free double-layer Lasso Loop repair to footprint.

Pre-and post-operative range of motion (ROM), cuff strength, VAS, Constant, ASES, and UCLA scores were assessed. Radiologic assessment included modified Patte and Goutallier classifications. All patients had MRI at 6 months to evaluate healing and integrity of repair was assessed using Sugaya classification with Sugaya 4 and 5 considered retears.

Advanced fatty degeneration (Goutallier 3-4) was present in 44% and 20% of supraspinatus and infraspinatus. Tendon retraction was to the level of or medial to glenoid in 22%, and just lateral in 66%. 50.8% mRCT extended to teres minor. Subscapularis was partially torn (Lafosse 1-3) in 46% and completely torn (Lafosse 4-5) in 20%.

At mean follow-up (52.4 weeks), a significant increase in ROM, Relative Cuff Strength (from 57% to 90% compared to contralateral side), VAS (from 4 ±2.5 to 1±1.7), Constant (50±17.8 to 74 ±13.0), ASES (52 ±17.5 to 87 ±14.9), and UCLA (16± 4.9 to 30 ±4.9) scores were noted. There were six retears (10%), one failure due to P. acnes infection. 93% returned to pre-injury work and 89% of cases returned to pre-injury sport. Satisfaction rate was 96%.

Muscle advancement technique for mRCT is a viable option with low retear rates, restoration of ROM, strength, and excellent functional outcomes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 98 - 98
23 Feb 2023
Woodfield T Shum J Tredinnick S Gadomski B Fernandez J McGilvray K Seim H Nelson B Puttlitz C Easley J Hooper G
Full Access

Introduction: The mechanobiology and response of bone formation to strain under physiological loading is well established, however investigation into exceedingly soft scaffolds relative to cancellous bone is limited. In this study we designed and 3D printed mechanically-optimised low-stiffness implants, targeting specific strain ranges inducing bone formation and assessed their biological performance in a pre-clinical in vivo load-bearing tibial tuberosity advancement (TTA) model. The TTA model provides an attractive pre-clinical framework to investigate implant osseointegration within an uneven loading environment due to the dominating patellar tendon force.

A knee finite element model from ovine CT data was developed to determine physiological target strains from simulated TTA surgery. We 3D printed low-stiffness Ti wedge osteotomy implants with homogeneous stiffness of 0.8 GPa (Ti1), 0.6 GPa (Ti2) and a locally-optimised design with a 0.3 GPa cortex and soft 0.1 GPa core (Ti3), for implantation in a 12-week ovine tibial advancement osteotomy (9mm). We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate.

Optimised Ti3 implants exhibited evenly high strains throughout, despite uneven wedge osteotomy loading. We demonstrated that higher strains above 3.75%, led to greater bone formation. Histomorphometry showed uniform bone ingrowthin optimised Ti3 compared to homogeneous designs (Ti1 and Ti2), and greater bone-implant contact. The greatest bone formation scores were seen in Ti3, followed by Ti2 and Ti1.

Results from our study indicate lower stiffness and higher strain ranges than normally achieved in Ti scaffolds stimulate early bone formation. By accounting for loading environments through rational design, implants can be optimised to improve uniform osseointegration. Design and 3D printing of exceedingly soft titanium orthopaedic implants enhance strain induced bone formation and have significant importance in future implant design for knee, hip arthroplasty and treatment of large load-bearing bone defects.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 2 - 2
23 Feb 2023
Roffe L Peterson R Smith G Penumarthy R Atkinson N Ross M Singelton L Bodian C Timoko-Barnes S
Full Access

Trauma and elective orthopaedic demands in New Zealand are increasing. In this study, prospective and retrospective data has been collected at Nelson Hospital and across New Zealand to identify the percentage of elective theatre time lost due to cancellation for acute patient care. Data has been collected from theatre management systems, hospital data systems and logged against secretarial case bookings, to calculate a percentage of elective theatre time lost to acute operating or insufficient bed capacity.

Data was collected over a five-month period at Nelson Hospital, with a total of 215 elective and 226 acute orthopaedic procedures completed. A total of 95 primary hip or knee arthroplasties were completed during this trial while 53 were cancelled. The total number of elective operative sessions (one session is the equivalent of a half day operating theatre time) lost to acute workload was 47.9. Thirty-three percent of allocated elective theatre time was cancelled - an equivalent of approximately one-full day elective operating per week.

Over a five-week period data was collected across all provincial hospitals in New Zealand, with an average of 18% of elective operating time per week lost due to acute workload. Elective cancellations were due to acute operating 40% of the time and bed shortages 60% of the time. The worst effected centre was Palmerston North which had an average of 33% of elective operating cancelled per week to accommodate acute surgery or due to bed shortages.

New Zealand's provincial orthopaedic surgeons are under immense pressure from acute operating that impedes provision of elective surgery. The New Zealand government definition of an ‘acute case’ does not reflect the nature of today's orthopaedic burden. Increasing and aging populations along with staff and infrastructure shortages have financial and societal impacts beyond medicine and require better definitions, further research, and funding from governance.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 100 - 100
23 Feb 2023
Tran T Driessen B Yap V Ng D Khorshid O Wall S Yates P Prosser G Wilkinson M Hazratwala K
Full Access

Clinical success of prostheses in joint arthroplasty is ultimately determined by survivorship and patient satisfaction. The purpose of this study was to compare (non-inferiority) a new morphometric designed stem for total hip arthroplasty (THA) against an established comparator.

A prospective randomised multi-centre study of 144 primary cementless THA performed by nine experienced orthopaedic surgeons was completed (70 received a fully coated collarless tapered stem and 74 received a morphometric designed proximally coated tapered stem). PROMs and blood serum markers were assessed preoperatively and at intervals up to 2-years postoperatively. In addition, measures of femoral stem fit, fill and subsidence at 2-years post-operatively were measured from radiographs by three observers, with an intra-class correlation coefficient of 0.918. A mixed effects model was employed to compare the two prosthesis over the study period. A p-value <0.05 was considered statistically significant.

Demographics, Dorr types and blood serum markers were similar between groups. Both stems demonstrated a significant improvement in PROMs between the pre- and post-operative measurements, with no difference at any timepoint (p > 0.05). The fully coated tapered collarless femoral stem had a non-significantly higher intra-operative femoral fracture rate (5.8% vs 1.4%, p = 0.24), with all patients treated with cable fixation and partial weight bearing. The mean subsidence at 2-years was 2.5mm +/− 2.3mm for the morphometric stem and 2.4mm +/− 1.8mm for the fully coated tapered collarless femoral stem (p = 0.879). There was one outlier in each group with increased subsidence (fully coated tapered collarless femoral stem 6.9mm, morphometric wedge stem 7.4mm), with both patients reporting thigh pain at 2 years.

When compared with an established stem, the newer designed morphometric wedge stem performed well with comparable radiological and PROM outcomes at 2 year follow up. Continued follow-up is required for long term benchmarking.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 32 - 32
11 Apr 2023
Wenzlick T Kutzner A Markel D Hughes R Chubb H Roberts K
Full Access

Excessive opioid prescriptions after total joint arthroplasty (TJA) increase risks for adverse opioid related events, chronic opioid use, and increase the availability of opioids for unlawful diversion. Thus, decreasing postoperative prescriptions may improve quality after TJA. Concerns exist that a decrease in opioids prescribed may increase complications such as readmissions, emergency department (ED) visits or worsened patient reported outcomes (PROs). The purpose of this quality improvement study was to explore whether a reduction in opioids prescribed after TJA resulted in increased complications.

Methods: Data originated from a statewide arthroplasty database (MARCQI). The database collects over 96% of all TJA performed in the state of Michigan, USA. Data was prospectively abstracted and included OMEs prescribed at discharge, readmissions, ED visits within 30 days and PROs. Data was collected one year before and after the creation of an opioid prescribing protocol that had decreased prescriptions by approximately 50% in opioid naive and tolerant patients. Trends were monitored using Shewhart control charts.

84,998 TJA over two-years were included. All groups showed a reduction in opioids prescribed. Importantly, no increased complications occurred concomitant to this reduction. No increases in ED visits or readmissions, and no decreases in KOOSJR/HOOSJR/PROMIS10 scores were noted in any of the groups.

Using large data sets and registries can drive performance and improve quality. The MARCQI Postoperative opioid prescription recommendations and performance measures decreased total oral morphine equivalents prescribed over a large and diverse population by approximately 50% without decreasing PROs or increasing ED visits or hospital readmissions. A reduction in opioids prescribed after TJA can be accomplished safely and without an increase in complications across a large population.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 80 - 80
2 Jan 2024
Mischler D Windolf M Gueorguiev B Varga P
Full Access

Osteosynthesis aims to maintain fracture reduction until bone healing occurs, which is not achieved in case of mechanical fixation failure. One form of failure is plastic plate bending due to overloading, occurring in up to 17% of midshaft fracture cases and often necessitating reoperation. This study aimed to replicate in-vivo conditions in a cadaveric experiment and to validate a finite element (FE) simulation to predict plastic plate bending.

Six cadaveric bones were used to replicate an established ovine tibial osteotomy model with locking plates in-vitro with two implant materials (titanium, steel) and three fracture gap sizes (30, 60, 80 mm). The constructs were tested monotonically until plastic plate deformation under axial compression. Specimen-specific FE models were created from CT images. Implant material properties were determined using uniaxial tensile testing of dog bone shaped samples. The experimental tests were replicated in the simulations. Stiffness, yield, and maximum loads were compared between the experiment and FE models.

Implant material properties (Young's modulus and yield stress) for steel and titanium were 184 GPa and 875 MPa, and 105 GPa and 761 MPa, respectively. Yield and maximum loads of constructs ranged between 469–491 N and 652–683 N, and 759–995 N and 1252–1600 N for steel and titanium fixations, respectively. FE models accurately and quantitatively correctly predicted experimental results for stiffness (R2=0.96), yield (R2=0.97), and ultimate load (R2=0.97).

FE simulations accurately predicted plastic plate bending in osteosynthesis constructs. Construct behavior was predominantly driven by the implant itself, highlighting the importance of modelling correct material properties of metal. The validated FE models could predict subject-specific load bearing capacity of osteosyntheses in vivo in preclinical or clinical studies.

Acknowledgements: This study was supported by the AO Foundation via the AOTRAUMA Network (Grant No.: AR2021_03).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 23 - 23
4 Apr 2023
Stoffel K Zderic I Pastor T Woodburn W Castle R Penman J Saura-Sanchez E Gueorguiev B Sommer C
Full Access

Treatment of simple and complex patella fractures represents a challenging clinical problem. Controversy exists regarding the most appropriate fixation method. Tension band wiring, aiming to convert the pulling forces on the anterior aspect of the patella into compression forces across the fracture site, is the standard of care, however, it is associated with high complication rates. Recently, anterior variable-angle locking plates have been developed for treatment of simple and comminuted patella fractures. The aim of this study was to investigate the biomechanical performance of the novel anterior variable-angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures.

Sixteen pairs of human cadaveric knees were used to simulate either two-part transverse simple AO/OTA 34-C1 or five-part complex AO/OTA 34-C3 patella fractures by means of osteotomies, with each fracture model created in eight pairs. The complex fracture pattern was characterized with a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or an anterior variable-angle locking core plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or an anterior variable-angle locking three-hole plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range from 90° flexion to full knee extension. Interfragmentary movements were captured by motion tracking.

For both fracture types, the articular displacements, measured between the proximal and distal fragments at the central aspect of the patella between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the anterior variable-angle locked plating compared with the tension band wiring, p < 0.01

From a biomechanical perspective, anterior locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 81 - 81
2 Jan 2024
Vautrin A Aw J Attenborough E Varga P
Full Access

Although 3D-printed porous dental implants may possess improved osseointegration potential, they must exhibit appropriate fatigue strength. Finite element analysis (FEA) has the potential to predict the fatigue life of implants and accelerate their development. This work aimed at developing and validating an FEA-based tool to predict the fatigue behavior of porous dental implants.

Test samples mimicking dental implants were designed as 4.5 mm-diameter cylinders with a fully porous section around bone level. Three porosity levels (50%, 60% and 70%) and two unit cell types (Schwarz Primitive (SP) and Schwarz W (SW)) were combined to generate six designs that were split between calibration (60SP, 70SP, 60SW, 70SW) and validation (50SP, 50SW) sets.

Twenty-eight samples per design were additively manufactured from titanium powder (Ti6Al4V). The samples were tested under bending compression loading (ISO 14801) monotonically (N=4/design) to determine ultimate load (Fult) (Instron 5866) and cyclically at six load levels between 50% and 10% of Fult (N=4/design/load level) (DYNA5dent). Failure force results were fitted to F/Fult = a(Nf)b (Eq1) with Nf being the number of cycles to failure, to identify parameters a and b. The endurance limit (Fe) was evaluated at Nf = 5M cycles. Finite element models were built to predict the yield load (Fyield) of each design. Combining a linear correlation between FEA-based Fyield and experimental Fult with equation Eq1 enabled FEA-based prediction of Fe.

For all designs, Fe was comprised between 10% (all four samples surviving) and 15% (at least one failure) of Fult. The FEA-based tool predicted Fe values of 11.7% and 12.0% of Fult for the validation sets of 50SP and 50SW, respectively. Thus, the developed FEA-based workflow could accurately predict endurance limit for different implant designs and therefore could be used in future to aid the development of novel porous implants.

Acknowledgements: This study was funded by EU's Horizon 2020 grant No. 953128 (I-SMarD). We gratefully acknowledge the expert advice of Prof. Philippe Zysset.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 34 - 34
11 Apr 2023
Kale S Mehra S Mehra K Shetty S Langade D Gunjotikar A Singh S
Full Access

Higher uric acid levels or hyperuricemia is a product of more uric acid production, dysfunctional renal excretion, or a combination of both leading to deposition of urate crystals in the joints and kidneys and has been strongly linked with the development of gout, that is, acute inflammatory arthritis. Uric acid levels have been suggested to depend on multiple factors including lifestyle, diet, alcohol consumption, etc. As these are risk parameters for hyperuricemia and since lifestyle choices vary amongst different Indian communities, we sought to study the prevalence of hyperuricemia in these communities. Also, large-scale data (in terms of gender, age, lifestyle, community) on the prevalence of hyperuricemia in subjects amongst different community populations, Hindu, Muslim, Sikh, and Christian was generated.

In a retrospective study conducted at Dr. D. Y. Patil School of Medicine & Research Centre, Navi Mumbai from April 2018 to May 2021, information was gathered from four major communities on a range of indicators including serum uric acid levels followed by a thorough multilevel logistic analysis. We evaluated uric acid levels in 10,378 patients of four different communities. Outcomes were assessed biochemically as well as clinically based on the levels of serum uric acid.

The mean serum uric acid levels were highest in Sikhs (7.6 mg%, n=732) followed by Christians (7.3 mg%, n=892) and then by Hindus (5.9 mg%, n=6846) and Muslims (5.6 mg%, n=1908). About 83.7% of Christians consumed meat in a non-vegetarian diet followed by 45.7% Muslims. Percentage of Christians who binge drink were highest whereas percentage of Sikh people in the heavy drinkers’ category were 5.2%. Further, 9.5% Hindus were current smokers followed by 7.8% Sikhs who smoked at present.

Overall, our study of 10,378 patients demonstrated that the serum uric acid levels varied from one Indian community to another due to varying external factors like diet, age, lifestyle, and addictions. Thus, lifestyle modification in communities with higher serum uric acid levels is highly advocated and this may reduce the healthcare burden of gouty arthritis in these communities.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 114 - 114
4 Apr 2023
Liu D Gao J Zheng M Liao P Li H Zhang C
Full Access

Though dentin matrix protein 1 (Dmp1) is known to play critical role in mediating bone mineralization, it has also been validated to be expressed in brain and helps maintain blood brain barrier (BBB). Our study aims to clarify the expression pattern of Dmp1 in mouse brain and explore whether intercellular mitochondrial transfer occurs between Dmp1 positive astrocytes (DPAs) and endothelial cells, and thus acting as a mechanism in maintaining BBB during aging.

Single cell RNA sequencing (scRNAseq) of 1 month, 6 month, and 20 month old mice brain (n=1, respectively) was employed to identify Dmp1 positive cell types. Dmp1Cre-mGmT and Dmp1Cre-COX8a fluorescent mice were generated to visualize DPAs and investigate their mitochondrial activities. A 3D noncontact coculture system and mitochondrial transplantation were applied to study the role of mitochondrial transfer between astrocytes and bEnd.3 endothelial cells. Dmp1Cre-Mfn2f/f mice were generated by depleting the ER-mitochondria tethering protein Mfn2 in DPAs.

Dmp1 was mainly expressed in astrocytes at different ages. GO analysis revealed that cell projection and adhesion of DPAs were upregulated. Confocal imaging on Dmp1Cre-mGmT mice indicated that DPAs are a cluster of astrocytes that closely adhere to blood vessels (n=3). Bioinformatics analysis revealed that mitochondrial activity of DPAs were compromised during aging. Enriched scRNAseq of fluorescent cells from Dmp1Cre-COX8a mice (n=2) and immunofluorescent imaging (n=3) validated the acquisition of extrinsic mitochondria in endothelial cells. 3D coculture of astrocytes and bEnd.3 and direct mitochondrial transplantation revealed the rescue effect of mitochondrial transfer on damaged bEnd.3. BBB was impaired after depleting Mfn2 in DPAs, expressing a similar phenotype with aging brain.

Astrocytes that express Dmp1 play a significant role in maintaining BBB via transferring mitochondria to vascular endothelial cells. Compromised mitochondrial transfer between DPAs and endothelial cells might be the potential mechanism of impaired BBB during aging.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 115 - 115
4 Apr 2023
Wu H Ding Y Sun Y Liu Z Li C
Full Access

Intervertebral disc degeneration can lead to physical disability and significant pain, while the present therapeutics still fail to biochemically and biomechanically restore the tissue. Stem cell-based therapy in treating intervertebral disc (IVD) degeneration is promising while transplanting cells alone might not be adequate for effective regeneration. Recently, gene modification and 3D-printing strategies represent promising strategies to enhanced therapeutic efficacy of MSC therapy. In this regard, we hypothesized that the combination of thermosensitive chitosan hydrogel and adipose derived stem cells (ADSCs) engineered with modRNA encoding Interleukin − 4 (IL-4) can inhibit inflammation and promote the regeneration of the degenerative IVD.

Rat ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IL-4 modRNA engineered ADSCs (named as IL-4-ADSCs) on nucleus pulposus cells.

ModRNA transfected mouse ADSCs with high efficiency and the IL-4 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IL-4 protein. In vitro, IL-4-ADSCs induced increased anabolic markers expression of nucleus pulposus cells in inflammation environment compared to untreated ADSCs.

These findings collectively supported the therapeutic potential of the combination of thermosensitive chitosan hydrogel and IL-4-ADSCs for intervertebral disc degeneration management. Histological and in vivo validation are now being conducted.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 105 - 105
23 Feb 2023
He W Masters R Baker J
Full Access

The minimisation of errors incurred during the learning process is thought to enhance motor learning and improve performance under pressure or in multitasking situations. If this is proven in surgical skills learning, it has the potential to enhance the delivery of surgical education. We aimed to compare errorless and errorful learning using the high-speed burr.

Medical students (n=30) were recruited and allocated randomly to an errorless or errorful group. The errorless learning group progressively learnt tasks from easy to difficult on cedar boards simulating bone. The errorful learning group also progressed through the same tasks but not in order of difficulty.

Transfer tasks assessed students’ performance of cervical laminoplasty on saw bone models to assess their level of learning from previous stages. During transfer task 2, students completed the procedure under time pressure and in the presence of distractors, in order to simulate real-life stressors in theatre. Accuracy, precision and safety of the procedure were scored by expert opinions from spine surgeons blinded to the grouping of the participants.

Both errorless and errorful learners demonstrated improvements in performance with increasing amounts of practice (demonstrated by the decreased time taken for the task as well as improvement in accuracy of the cuts (depth, width and smoothness). The performance of both groups was not impaired by the incorporation of a secondary task which required participants to multitask. No statistically significant difference in performance was noted between the two groups.

In contrast to previous research, there was no significant difference between errorless or errorful learning to develop skills with a high-speed, side-cutting burr. In both groups, practical learning during the session has led to improvement in overall performance with the burr relevant to cervical laminoplasty.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 27 - 27
4 Apr 2023
Lebleu J Kordas G Van Overschelde P
Full Access

There is controversy regarding the effect of different approaches on recovery after THR. Collecting detailed relevant data with satisfactory compliance is difficult. Our retrospective observational multi-center study aimed to find out if the data collected via a remote coaching app can be used to monitor the speed of recovery after THR using the anterolateral (ALA), posterior (PA) and the direct anterior approach (DAA).

771 patients undergoing THR from 13 centers using the moveUP platform were identified. 239 had ALA, 345 DAA and 42 PA. There was no significant difference between the groups in the sex of patients or in preoperative HOOS Scores. There was however a significantly lower age in the DAA (64,1y) compared to ALA (66,9y), and a significantly lower Oxford Hip Score in the DAA (23,9) compared to PA(27,7). Step count measured by an activity tracker, pain killer and NSAID use was monitored via the app. We recorded when patients started driving following surgery, stopped using crutches, and their HOOS and Oxford hip scores at 6 weeks.

Overall compliance with data request was 80%. Patients achieved their preoperative activity level after 25.8, 17,7 and 23.3 days, started driving a car after 33.6, 30.3 and 31.7 days, stopped painkillers after 27.5, 20.2 and 22.5 days, NSAID after 30.3, 25.7, and 24.7 days for ALA, DAA and PA respectively. Painkillers were stopped and preoperative activity levels were achieved significantly earlier favoring DAA over ALA. Similarly, crutches were abandoned significantly earlier (39.9, 29.7 and 24.4 days for ALA, DAA and PA respectively) favoring DAA and PA over ALA. HOOS scores and Oxford Hip scores improved significantly in all 3 groups at 6 weeks, without any statistically significant difference between groups in either Oxford Hip or HOOS subscores.

No final conclusion can be drawn as to the superiority of either approach in this study but the remote coaching platform allowed the collection of detailed data which can be used to advise patients individually, manage expectations, improve outcomes and identify areas for further research.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 2 - 2
7 Nov 2023
du Plessis JG Koch O le Roux T O'Connor M
Full Access

In reverse shoulder arthroplasty (RSA), a high complication rate is noted in the international literature (24.7%), and limited local literature is available. The complications in our developing health system, with high HIV, tuberculosis and metabolic syndrome prevalence may be different from that in developed health systems where the literature largely emanates from. The aim of this study is to describe the complications and complication rate following RSA in a South African cohort.

An analytical, cross-sectional study was done where all patients’ who received RSA over an 11 year period at a tertiary hospital were evaluated. One-hundred-and-twenty-six primary RSA patients met the inclusion criteria and a detailed retrospective evaluation of their demographics, clinical variables and complication associated with their shoulder arthroplasty were assessed. All fracture, revision and tumour resection arthroplasties were excluded, and a minimum of 6 months follow up was required.

A primary RSA complication rate of 19.0% (24/126) was noted, with the most complications occurring after 90 days at 54.2% (13/24). Instability was the predominant delayed complication at 61.5% (8/13) and sepsis being the most common in the early days at 45.5% (5/11). Haematoma formation, hardware failure and axillary nerve injury were also noted at 4.2% each (1/24).

Keeping in mind the immense difference in socioeconomical status and patient demographics in a third world country the RSA complication rate in this study correlates with the known international consensus. This also proves that RSA is still a suitable option for rotator cuff arthropathy and glenohumeral osteoarthritis even in an economically constrained environment like South Africa.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 10 - 10
10 Feb 2023
Talia A Clare S Liew S Edwards E
Full Access

The Victorian state government introduced a trial electronic scooter sharing scheme on 1st February 2022 in inner city Melbourne. Despite epidemiological data from other jurisdictions that show these devices are associated with significant trauma. This is a descriptive study from the largest trauma centre in Victoria demonstrating the “scope of the problem” after introduction of this government-approved, ride sharing scheme.

Retrospective case series. Our hospital orthopaedic department database was searched from 1/1/2021 to 30/6/22 to identify all presentations associated with electronic scooter trauma, the mechanism of injury and admission information was confirmed via chart review. Data collected included: mode of arrival, alcohol/drug involvement, hospital LOS, injury severity score, ICU admission, list of injuries, operations undertaken, surgical procedures, discharge destination, death.

In the 12 months prior to and 5 months since introduction of the ride share scheme, 43 patients were identified. 18 patients (42% of our cohort) presented in the 5 months since ride sharing was introduced, and 25 patients in the preceding 12 months.

58% were found to be alcohol or drug affected. All patients were admitted to hospital, 14% of which included ICU admission. 44% were polytrauma admissions. Median hospital length of stay was 2 days. The longest individual hospital stay was 69 days. No patients in this series died. There were 49 surgical procedures in 35 patients including neurosurgical, plastics and maxillofacial operations. Mean Injury Severity Score was 10.

Despite data demonstrating their danger in other jurisdictions, the Victorian state government approved a trial of an electronic scooter ride share scheme in inner Melbourne in February 2022. These devices are associated with a significant trauma burden and the rate has increased since the introduction of the ride-sharing scheme. This data may be combined with other hospital data and could be used to inform policy makers.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 83 - 83
23 Feb 2023
Le Rossignol S Boekel P Grant A Doma K Morse L
Full Access

Currently, the consensus regarding subscapularis tendon repair during a reverse total shoulder arthroplasty (rTSA) is to do so if it is possible. Repair is thought to decrease the risk of dislocation and improve internal rotation but may also increase stiffness and improvement in internal rotation may be of subclinical benefit. Aim is to retrospectively evaluate the outcomes of rTSA, with or without a subscapularis tendon repair.

We completed a retrospective review of 51 participants (25 without and 26 with subscapularis repair) who received rTSR by a single-surgeon using a single-implant. Three patient reported outcome measures (PROM) were assessed pre-operatively and post-operative at twelve months, as well as range of movement (ROM) and plain radiographs. Statistical analysis utilized unpaired t tests for parametric variables and Mann-Whitney U test for nonparametric variables.

External Rotation ROM pre-operatively was the only variable with a significance difference (p=0.02) with the subscapularis tendon repaired group having a greater range. Pre- and post-operative abduction (p=0.72 & 0.58), forward flexion (p=0.67 & 0.34), ASES (p=0.0.06 & 0.78), Oxford (p=0.0.27 & 0.73) and post-operative external rotation (p=0.17)

Greater external rotation ROM pre-operatively may be indicative of the ability to repair the subscapularis tendon intra-operatively. However, repair does not seem to improve clinical outcome at 12 months.

There was no difference of the PROMs and AROMs between the subscapularis repaired and not repaired groups for any of the variables at the pre-operative or 12 month post operative with the exception of the external rotation ROM pre-operatively. We can conclude that from PROM or AROM perspective there is no difference if the tendon is repaired or not in a rTSR and indeed the patients without the repair may have improved outcomes at 12 months.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 7 - 7
17 Nov 2023
Hayward S Gheduzzi S Keogh P Miles T
Full Access

Abstract

Objectives

Spinal stiffness and flexibility terms are typically evaluated from linear regression of experimental data and are then assembled into 36-element matrices. Summarising in vitro test results in this manner is quick, computationally cheap and has the distinct advantage of outputting simple characteristic values which make it easy to compare results. However, this method disregards many important experimental features such as stiffening effects, neutral and elastic zones magnitudes, extent of asymmetry and energy dissipation (hysteresis). Alternatives to the linear least squares method include polynomials, separation of the load-displacement behaviour into the neutral and elastic zones using various deterministic methods and variations on the double sigmoid and Boltzmann curve fits. While all these methods have their advantages, none provide a comprehensive and complete characterisation of the load-displacement behaviour of spine specimens. In 1991, Panjabi demonstrated that the flexion-extension and mediolateral bending behaviour of functional spinal units could be approximated using the viscoelastic model consisting of a nonlinear spring in series with a linear Kelvin element. Nowadays viscoelastic models are mainly used to describe creep and stress relaxation, rather than for cyclic loading. The aim of this study was to conclusively prove the viscoelastic nature of spinal behaviour subject to cyclic loading. Being able to describe the behaviour of spine specimens using springs and dampers would yield characterising coefficients with recognisable physical meaning, thus providing an advantage over existing techniques.

Methods

Six porcine isolated spinal disc specimens (ISDs) were tested under position and load control. Visual inspection of the load-displacement graphs from which the principal terms of the stiffness and flexibility matrices are derived suggest that the load-displacement behaviour could be idealised by a nonlinear spring system with damping. It was hypothesised that the contributions arising from non-linear spring-like behaviour and damping could be separated for each of the principal load-displacement graphs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 84 - 84
23 Feb 2023
Le Rossingol S Boekel P Grant A Doma K Morse L
Full Access

The reverse total shoulder replacement (rTSR) has excellent clinical outcomes and prosthesis longevity, and thus, the indications have expanded to a younger age group. The use of a stemless humeral implant has been established in the anatomic TSR; and it is postulated to be safe to use in rTSR, whilst saving humeral bone stock for younger patients. The Lima stemless rTSR is a relatively new implant, with only one paper published on its outcomes.

This is a single-surgeon retrospective matched case control study to assess short term outcomes of primary stemless Lima SMR rTSR with 3D planning and Image Derived Instrumentation (IDI), in comparison to a matched case group with a primary stemmed Lima SMR rTSR with 3D planning and IDI.

Outcomes assessed: ROM, satisfaction score, PROMs, pain scores; and plain radiographs for loosening, loss of position, notching. Complications will be collated. Patients with at least 1 year of follow-up will be assessed.

With comparing the early radiographic and clinical outcomes of the stemless rTSR to a similar patient the standard rTSR, we can assess emerging trends or complications of this new device.

41 pairs of stemless and standard rTSRs have been matched, with 1- and 2-year follow up data. Data is currently being collated. Our hypothesis is that there is no clinical or radiographical difference between the Lima stemless rTSR and the traditional Lima stemmed rTSR.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 45 - 45
24 Nov 2023
Dendoncker K Putzeys G Cornu O Nieuwenhuizen T Bertrand M Valster H Croes K
Full Access

Aim

Local antibiotics released through a carrier is a commonly used technique to prevent infection in orthopaedic procedures. An interesting carrier in aseptic bone reconstructive surgery are bone chips impregnated with AB solution. Systemically administered Cefazolin (CFZ) is used for surgical site infection prophylaxis however in vitro study showed that fresh frozen and processed bone chips impregnated with CFZ solution completely release the CFZ within a few hours. On the other hand irradiated freeze-dried bone chips, treated with supercritical CO2 (scCO2) have been shown to be an efficient carrier for the antibiotics vancomycine or tobramycine.

With this pilot study we wanted to investigate if CFZ solution impregnation of bone chips treated with scCO2 shows a more favorable release pattern of CFZ.

Method

The bone chips were prepared using the standard scCO2 protocol and were impregnated with 100 mg/ml cefazolin at different timepoints during the process: before freeze drying (BC type A), after freeze drying (BC type B) and after gamma-irradiation. 0.5g of the impregnated bone grafts were incubated with 5ml of fetal calf serum (FCS) at 37°C. At 2, 4, 6, 8 and 24h of incubation 200µl of eluate was taken for analysis. After 24h the remaining FCS was removed, bone grafts were washed and new FCS (5ml) was added. Consecutive eluate samples were taken at 48, 72 and 96h of incubation.

The concentration of CFZ in the eluates was measured with the validated UPLC-DAD method. Analysis was performed in triplicate.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 36 - 36
7 Jun 2023
Hothi H Henckel J Di Laura A Skinner J Hart A
Full Access

3D printing acetabular cups offers the theoretical advantage of enhanced bony fixation due to greater design control of the porous implant surfaces. Analysing retrieved 3D printed implants can help determine whether this design intent has been achieved.

We sectioned 14 off-the-shelf retrieved acetabular cups for histological analysis; 7 cups had been 3D printed and 7 had been conventionally manufactured. Some of the most commonly used contemporary designs were represented in both groups, which were removed due to either aseptic loosening, unexplained pain, infection or dislocation. Clinical data was collected for all implants, including their age, gender, and time to revision.

Bone ingrowth was evaluated using microscopic assessment and two primary outcome measures: 1) bone area fraction and 2) extent of bone ingrowth.

The additively manufactured cups were revised after a median (IQR) time of 24.9 months (20.5 to 45.6) from patients with a median (IQR) age of 61.1 years (48.4 to 71.9), while the conventional cups had a median (IQR) time to revision of 46.3 months (34.7 to 49.1, p = 0.366) and had been retrieved from patients with a median age of 66.0 years (56.9 to 68.9, p = 0.999).

The additively and conventionally manufactured implants had a median (IQR) bone area fraction of 65.7% (36.4 to 90.6) and 33.9% (21.9 to 50.0), respectively (p < 0.001).

A significantly greater amount of bone ingrowth was measured into the backside of the additively manufactured acetabular cups, compared to their conventional counterparts (p < 0.001). Bone occupied a median of 60.0% and 5.7% of the porous depth in the additively manufactured and conventional cups, respectively.

3D printed components were found to achieve a greater amount of bone ingrowth than their conventionally manufactured counterparts, suggesting that the complex porous structures generated through this manufacturing technique may encourage greater osteointegration.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 10 - 10
4 Apr 2023
Fridberg M Bue M Duedal Rölfing J Kold S Ghaffari A
Full Access

An international Consensus Group has by a Delphi approach identified the topic of host factors affecting pin site infection to be one of the top 10 priorities in external fixator management. The aim of this study was to report the frequency of studies reporting on specific host factors as a significant association with pin site infection. Host factors to be assessed was: age, smoking, BMI and any comorbidity, diabetes, in particular. The intention was an ethological review, data was extracted if feasible, however no meta-analysis was performed.

A systematic literature search was performed according to the PRISMA-guidelines. The protocol was registered before data extraction in PROSPERO. The search string was based on the PICO criterias. A logic grid with key concept and index terms was made. A search string was built assisted by a librarian. The literature search was executed in three electronic bibliographic databases, including Embase MEDLINE (1111 hits) and CINAHL (2066 hits) via Ovid and Cochrane Library CENTRAL (387 hits). Inclusion criteria: external fixation, >1 pin site infection, host factor of interest, peer-reviewed journal. Exclusion criteria: Not written in English, German, Danish, Swedish, or Norwegian, animal or cadaveric studies, location on head, neck, spine, cranium or thorax, editorials or conference abstract. The screening process was done using Covidence.

A total of 3564 titles found. 3162 excluded by title and abstract screening. 140 assessed for full text eligibility. 11 studies included for data extraction. The included studies all had a retrospective design. Three identified as case-control studies. Generally the included studies was assessed to have a high risk of bias. A significant associations between pin site infection for following host factors: a) increased HbA1C level in diabetic patients; b) congestive heart failure in diabetic patients; c) less co-morbidity; d) preoperative osteomyelitis was found individually.

This systematic literature search identified a surprisingly low number of studies examining for risk of pin site infection and host factors. Thus, this review most of all serves to demonstrate a gap of evidence about correlation between host factors and risk of pin site infection, and further studies are warranted.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 99 - 99
4 Apr 2023
Lu V Tennyson M Fortune M Zhou A Krkovic M
Full Access

Fragility ankle fractures are traditionally managed conservatively or with open reduction internal fixation (ORIF). Tibiotalocalcaneal (TTC) fusion is an alternative option for the geriatric patient. This systematic review and meta-analysis provides a detailed analysis of the functional and clinical outcomes of hindfoot nailing for fragility ankle fractures presented so far in the literature.

A systematic search was performed on MEDLINE, EMBASE, Cochrane Library, Scopus, Web of Science, identifying fourteen studies for inclusion. Studies including patients over 60 with a fragility ankle fracture, treated with TTC nail were included. Patients with a previous fracture of the ipsilateral limb, fibular nails, and pathological fractures were excluded.

Subgroup analyses were performed according to (1) open vs closed fractures, (2) immediate post-operative FWB vs post-operative NWB, (3) majority of cohort are diabetics vs minority of cohort are diabetics. Meta-regression analyses were done to explore sources of heterogeneity, and publication bias was assessed using Egger's test.

The pooled proportion of superficial infection, deep infection, implant failure, malunion, and all-cause mortality was 0.10 (95%CI:0.06-0.16; I2=44%), 0.08 (95%CI:0.06-0.11, I2=0%), 0.11 (95%CI:0.07-0.15, I2=0%), 0.11 (95%CI:0.06-0.18; I2=51%), and 0.27 (95%CI:0.20-0.34; I2=11%), respectively. The pooled mean post-operative OMAS score was 54.07 (95%CI:48.98-59.16; I2=85%). The best-fitting meta-regression model included age and percentage of male patients as covariates (p=0.0263), and were inversely correlated with higher OMAS scores.

Subgroup analyses showed that studies with a majority of diabetics had a higher proportion of implant failure (p=0.0340) and surgical infection (p=0.0096), and a lower chance of returning to pre-injury mobility than studies with a minority of diabetics (p=0.0385). Egger's test (p=0.56) showed no significant publication bias.

TTC nailing is an adequate alternative option for fragility ankle fractures. However, current evidence includes mainly case series with inconsistent outcome measures reported and post-operative rehabilitation protocols. Prospective RCTs with long follow-up times and large cohort sizes are needed to clearly guide the use of TTC nailing for ankle fractures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 11 - 11
4 Apr 2023
O’Beirne A Pletikosa Z Cullen J Bassonga E Lee C Zheng M
Full Access

Nerve transfer is an emerging treatment to restore upper limb function in people with tetraplegia. The objective of this study is to examine if a flexible collage sheet (FCS) can act as epineurial-like substitute to promote nerve repair in nerve transfer.

A preclinical study using FCS was conducted in a rat model of sciatic nerve transection. A prospective case series study of nerve transfer was conducted in patients with C5-C8 tetraplegia who received nerve transfer to restore upper limb function. Motor function in the upper limb was assessed pre-treatment, and at 6-,12-, and 24-months post-treatment.

Macroscopic assessment in preclinical model showed nerve healing by FCS without encapsulation or adhesions. Microscopic examination revealed that a new, vascularised epineurium-like layer was observed at the FCS treatment sites, with no evidence of inflammatory reaction or nerve compression. Treatment with FCS resulted in well-organised nerve fibres with dense neurofilaments distal to the coaptation site. Axon counts performed proximal and distal to the coaptation site showed that 97% of proximal axon count of myelinated axons regenerated across the coaptation site after treatment with CND. In the proof of concept clinical study 17 nerve transfers were performed in five patients. Nerve transfers included procedures to restore triceps function (N=4), wrist/finger/thumb extension (N=6) and finger flexion (N=7). Functional motor recovery (MRC ≥3) was achieved in 76% and 88% of transfers at 12 and 24 months, respectively.

The preclinical study showed that FCS mimics epineurium and enable to repair nerve resembled to normal nerve tissue. Clinical study showed that patients received nerve transfer with FCS experienced consistent and early return of motor function in target muscles. These results provide proof of concept evidence that CND functions as an epineurial substitute and is promising for use in nerve transfer surgery.


Arthroscopic management of femoroacetabular impingement (FAI) has become the mainstay of treatment. However, chondral lesions are frequently encountered and have become a determinant of less favourable outcomes following arthroscopic intervention.

The aim of this systematic review and meta-analysis was to assess the outcomes of hip arthroscopy (HA) in patients with FAI and concomitant chondral lesions classified as per Outerbridge.

A systematic search was performed using the PRISMA guidelines on four databases including MEDLINE, EMBASE, Cochrane Library and Web of Science. Studies which included HA as the primary intervention for management of FAI and classified chondral lesions according to the Outerbridge classification were included. Patients treated with open procedures, for osteonecrosis, Legg-Calve-Perthes disease, and previous ipsilateral hip fractures were excluded. From a total of 863 articles, twenty-four were included for final analysis. Demographic data, PROMs, and radiological outcomes and rates of conversion to total hip arthroplasty (THA) were collected. Risk of bias was assessed using ROBINS-I.

Improved post-operative PROMs included mHHS (mean difference:-2.42; 95%CI:-2.99 to −1.85; p<0.001), NAHS (mean difference:-1.73; 95%CI: −2.23 to −1.23; p<0.001), VAS (mean difference: 2.03; 95%CI: 0.93-3.13; p<0.001). Pooled rate of revision surgery was 10% (95%CI: 7%-14%). Most of this included conversion to THA, with a 7% pooled rate (95%CI: 4%-11%).

Patients had worse PROMs if they underwent HA with labral debridement (p=0.015), had Outerbridge 3 and 4 lesions (p=0.012), concomitant lesions of the femoral head and acetabulum lesions (p=0.029). Reconstructive cartilage techniques were superior to microfracture (p=0.042). Even in concomitant lesions of the femoral head and acetabulum, employing either microfracture or cartilage repair/reconstruction provided a benefit in PROMs (p=0.027).

Acceptable post-operative outcomes following HA with labral repair/reconstruction and cartilage repair in patients with FAI and concomitant moderate-to-severe chondral lesions, can be achieved. Patients suffering from Outerbridge 3 and 4 lesions, concomitant acetabular rim and femoral head chondral lesions that underwent HA with labral debridement, had worse PROMs. Reconstructive cartilage techniques were superior to microfracture. Even in concomitant acetabular and femoral head chondral lesions, employing either microfracture or cartilage repair/reconstruction was deemed to provide a benefit in PROMs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 13 - 13
4 Apr 2023
Meesters D Groven R Wijnands N Poeze M
Full Access

Nitric oxide is a free radical which in vivo is solely produced during the conversion of the amino acid arginine into citrulline by nitric oxide synthase enzymes. Recently, the importance of nitric oxide on inflammation and bone metabolism has been investigated. However, the knowledge regarding possible in vitro effects of arginine supplementation on chondrogenic differentiation is limited.

ATDC5, a cell line which is derived from mouse teratocarcinoma cells and which is characterized as chondrogenic cell line, were proliferated in Dulbecco's Modified Eagle Medium (DMEM)/F12 and subsequently differentiated in proliferation medium supplemented with insulin, transferrin and sodium-selenite and where arginine was added in four different concentrations (0, 7.5, 15 and 30 mM). Samples were harvested after 7 or 10 days and were stored at −80 °C for subsequent RNA isolation for qPCR analysis. To determine chondrogenic differentiation, Alcian Blue staining was performed to stain the proteoglycan aggrecan, which is secreted by differentiated ATDC5 cells. All measurements were performed in triplo.

Alcian Blue staining showed a qualitative increase of proteoglycan aggrecan secretion in differentiated ATDC5 cells after treatment with 7 and 15 mM arginine, with additional increased expression of ColII, ColX, Bmp4 and Bmp6. Treatment with 30 mM arginine inhibited chondrogenic differentiation and expression of aforementioned genes, however, Cox-2 and Vegfa gene expression were increased in these samples. Bmp7 was not significantly expressed in any experimental condition.

The obtained results are suggestive for a dose-dependent effect of arginine supplementation on chondrogenic differentiation and associated gene expression, with 7.5 and 15 mM as most optimal concentrations and implications for apoptosis after incubation with 30 mM arginine. A future recommendation would be to investigate the effects of citrulline in a similar experiment, as this shows even more promising results to enhance the nitric oxide metabolism in sepsis and bone healing.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 19 - 19
10 Feb 2023
Crombie A Boyd J Pozzi R
Full Access

Multiple studies have established an inverse relationship between ambient theatre temperatures and polymethyl methacrylate (PMMA) cement setting times. It is also known that allowing cement to equilibrate to ambient theatre temperatures restores expected setting characteristics. One overlooked entity is the transport and storage conditions of cement. This is important in tropical regions, where extreme temperature and humidity may cause rapid cement setting times, resulting in potentially significant intra-operative complications.

This study investigated the relationship between extreme transport and storage conditions of Antibiotic Simplex cement (Stryker), and the effect on setting times at Cairns Hospital, Far North Queensland, Australia.

Fifty units of cement were divided evenly into a control arm and four experimental arms. The experimental arms were designed to mimic potential transport and storage conditions. They included seven days of storage in a medication fridge, on the hospital loading dock, in a cane shed, and in a Toyota Landcruiser parked outdoors during January 2022. Humidity and temperature readings were recorded.

The samples in each group were evenly distributed to equilibrate to theatre conditions for 1 hour and 24 hours. Setting time was recorded when a no. 15 scalpel blade was unable to mark the surface.

All three ‘hot’ exposures setting times were significantly faster for both 1 hour (ρ=0.001) and 24 hours (ρ=0.024) equilibration times. The difference in setting times for the ‘cold’ exposure was not significant for either equilibration times (ρ=1).

To our knowledge, this is the first study investigating cement setting times in tropical climates. Further studies are required to address the effect of these conditions on biomechanical strength of PMMA cement. We conclude that extreme heat and humidity during transport and storage have a statistically significant effect on cement setting times.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 69 - 69
17 Apr 2023
Day G Jones A Mengoni M Wilcox R
Full Access

Autologous osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage, taken from a non-loadbearing region of the knee. Despite positive clinical use, factors that cause graft subsidence or poor integration are relatively unknown. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint and to investigate parameters affecting osteochondral graft stability.

Initial experimental tests on cadaveric femurs were performed to calibrate the bone properties and graft-bone frictional forces for use in corresponding FE models, generated from µCT scan data. The effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using in vitro tests on a single cadaveric human tibiofemoral joint. Six defects were created in the femoral condyles which were subsequently treated with osteochondral autografts or metal pins. Matching µCT scan-based FE models were created, and the contact patches were compared. Sensitivity to graft bone properties was investigated.

The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC=0.87). The tibiofemoral joint experiment provided a range of cases to model. These cases were well captured experimentally and represented accurately in the FE models. Graft properties relative to host bone had large effects on immediate graft stability despite limited changes to resultant cartilage contact pressure.

Model confidence was built through extensive validation and sensitivity testing, and demonstrated that specimen-specific properties were required to accurately represent graft behaviour. The results indicate that graft bone properties affect the immediate stability, which is important for the selection of allografts and design of future synthetic grafts.

Acknowledgements

Supported by the EPSRC-EP/P001076.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 114 - 114
10 Feb 2023
Rosser K Ryu J Deo S Flint M
Full Access

The NZ Standards of Service Provision for Sarcoma patients were developed by the NZ Sarcoma working group and published by the Ministry of Health (MOH) in 2013. Although not formally enacted by the MOH we aimed to determine the impact of these published standards and referral pathways on disease-specific survival of patients with soft-tissue sarcoma in NZ.

The Middlemore Musculoskeletal Tumour Unit database was searched. Patients referred for treatment in our centre with a diagnosis of soft tissue sarcoma in the five-year period before (n=115) and after (n=155) were included. We excluded patients with bone sarcomas and retroperitoneal soft tissue sarcomas.

The rate of referral after inappropriate treatment reduced after implementation of the Standards (24% vs 12%, p=0.010). The number of patients referred with tumours larger than 50mm decreased (74.8% vs 72.3%, p=0.021) and fewer had metastases at diagnosis (11.3% vs 3.2%, p=0.017). Mortality was lower in the group after introduction of the Standards (45% vs 30%, p=0.017). The estimated disease-specific survival curve between the two groups shows a trend towards increased survival in the post-standards group, although not reaching statistical significance. Local recurrence rate and metastasis rate after definitive treatment were similar between the two groups. Patients had a shorter duration of symptoms before referral in the post-Standards group although this was not statistically significant.

Since implementation of the Standards, patients have been referred more promptly, with fewer inappropriate treatments. The time to mortality curve indicates a trend towards improved disease-specific survival. We conclude that the pathway for investigation and referral for this condition has become clearer, supporting the ongoing use of the Sarcoma Standards, and that these should be formally implemented by the MOH.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 14 - 14
17 Nov 2023
Raghu A Kapilan M Sahae I Tai S
Full Access

Abstract

Background

1. 63,284 patients presented with neck of femur fractures in England in 2020 (NHFD report 2021)2. To maximise theatre efficiency during the first wave of COVID-19, NHSE guidance recommended the use of HA for most patients requiring arthroplasty.3. The literature reports an incidence of Hemiarthroplasty dislocations of 1–15%.

Aims

1. To study the number and possible causes of dislocations in patients with Primary hemiarthroplasty for fracture neck of femur2. To compare our data with national and international data in terms of dislocation and revision rates for Hemiarthroplasty.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 21 - 21
10 Feb 2023
McDonald A Maling A Puttick M
Full Access

Instant messaging via WhatsApp is used within hospital teams. Group messaging can lead to efficient and non-hierarchical communication. Despite being end-to-end encrypted, WhatsApp is owned by Facebook, raising concerns regarding data security. The aims of this study were: 1) to record the prevalence of WhatsApp group instant messaging amongst clinical teams; 2) to ascertain clinician attitudes towards use of instant messaging, 3) to gauge clinicians’ awareness of best practice regarding mobile data protection and 4) to create a practical guideline based off available literature that can be used to by clinicians to improve data security practice.

Over a two-week period, clinical nurse specialists in the Auckland District Health Board Department of Orthopaedics retrospectively completed a blind audit of all messaging activity across the five teams WhatsApp group message threads, recording quantity of messages sent and the nature of the messages. Concurrently individuals in these WhatsApp groups completed an anonymous survey of their use of WhatsApp and their awareness of local data security policies and practice. A guideline adapted from available literature was created to compare current practice to recommended standards and subsequently adopted into local policy.

1360 messages were sent via WhatsApp in a two-week period. 384 (28%) of the messages contained patient identifiable data. Thirty-six photos were shared. Participants rated use of WhatsApp at 9.1/10 – extremely beneficial. Sixty-five per cent of clinicians reported they had not read or were unaware of the ADHB policies regarding mobile devices and information privacy and security.

WhatsApp use is widespread within the Orthopaedic department and is the preferred platform of communication with many perceived benefits. Data security is a risk and implementation of an appropriate guideline to assist clinicians in achieving best practice is crucial to ensure patient data remains protected.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 72 - 72
2 Jan 2024
Loiselle A
Full Access

During aging, tendons demonstrate substantial disruptions in homeostasis, leading to impairments in structure-function. Impaired tendon function contributes to substantial declines quality of life during aging. Aged tendons are more likely to undergo spontaneous rupture, and the healing response following injury is impaired in aged tendons. Thus, there is a need to develop strategies to maintain tendon homeostasis and healing capacity through the lifespan. Tendon cell density sharply declines by ∼12 months of age in mice, and this low cell density is retained in geriatric tendons. Our data suggests that this decline in cellularity initiates a degenerative cascade due to insufficient production of the extracellular matrix (ECM) components needed to maintain tendon homeostasis. Thus, preventing this decline in tendon cellularity has great potential for maintaining tendon health. Single cell RNA sequencing analysis identifies two changes in the aged tendon cell environment. First, aged tendons primarily lose tenocytes that are associated with ECM biosynthesis functions. Second, the tenocytes that remain in aged tendons have disruptions in proteostasis and an increased pro-inflammatory phenotype, with these changes collectively termed ‘programmatic skewing'. To determine which of these changes drives homeostatic disruption, we developed a model of tenocyte depletion in young animals. This model decreases tendon cellularity to that of an aged tendon, including decreased biosynthetic tenocyte function, while age-related programmatic skewing is absent. Loss of biosynthetic tenocyte function in young tendons was sufficient to induce homeostatic disruption comparable to natural aging, including deficits in ECM organization, composition, and material quality, suggesting loss biosynthetic tenocytes as an initiator of tendon degeneration. In contrast, our data suggest that programmatic skewing underpins impaired healing in aged tendons. Indeed, despite similar declines in the tenocyte environment, middle-aged and young-depleted tendons mount a physiological healing response characterized by robust ECM synthesis and remodeling, while aged tendons heal with insufficient ECM.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 120 - 120
11 Apr 2023
Hettich G Weiß J Grupp T
Full Access

In severe cases of total knee arthroplasty which cannot be treated with off-the-shelf implants anymore custom-made knee implants may serve as one of the few remaining options to restore joint function or to prevent limb amputation. Custom-made implants are specifically designed and manufactured for one individual patient in a single-unit production, in which the surgeon is responsible for the implant design characteristics in consultation with the corresponding engineer.

The mechanical performance of these custom-made implants is challenging to evaluate due to the unique design characteristics and the limited time until which the implant is needed. Nevertheless, the custom-made implant must comply with clinical and regulatory requirements. The design of custom-made implants is often based on a underlying reference implant with available biomechanical test results and well-known clinical performance. To support surgeons and engineers in their decision whether a specific implant design is suitable, a method is proposed to evaluate its mechanical performance.

The method uses finite element analysis (FEA) and comprises six steps: (1) Identification of the main potential failure mechanism and its corresponding FEA quantity of interest. (2) Reproduction of the biomechanical test of the reference implant via FEA. (3) Identification of the maximum value of the corresponding FEA quantity of interest at the required load level. (4) Definition of this value as the acceptance criteria for the FEA of the custom-made implant. (5) Reproduction of the biomechanical test with the custom-made implant via FEA. (6) Conclusion whether the acceptance criteria is fulfilled or not.

The method was applied to two exemplary cases of custom-made knee implants. The FEA acceptance criteria derived from the reference implants were fulfilled in both custom-made implants. Subsequent biomechanical tests verified the FEA results.

This study suggests and applies a non-destructive and efficient method for pre-clinical testing of a single-unit custom-made knee implant to evaluate whether the design is mechanically suitable.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 22 - 22
10 Feb 2023
Horn A Cetner C Laubscher M Tootlah H
Full Access

Osteoarticular infections (OAI) are a common cause of morbidity in children, and as opposed to adults is usually caused by haematogenous spread. The bacteriology of OAI in children is not well described in the South African context, therefore this study was designed to determine the bacteriology of OAI in our population.

All patients that underwent surgery for the treatment of OAI over a 3-year period were identified and those with positive cultures where organisms were identified from tissue, pus, fluid or blood were included. Duplicate cultures from the same patient were excluded if the organism and antibiotic susceptibility profile was the same. Patients were categorised according to age and class of infection (Septic arthritis, acute osteomyelitis, fracture related infection, post-operative sepsis and chronic osteomyelitis) and organisms were stratified according to these categories.

We identified 132 organisms from 123 samples collected from 86 patients. Most cultured organisms were from children older than 3-years with acute haematogenous septic arthritis, osteomyelitis, or both. Methicillin sensitive Staphylococcus aureus accounted for 56% (74/132) of organisms cultured. There were no cases of MRSA. The Enterobacterales accounted for 17% (22/132) of organisms cultured, mostly in the fracture related and post-operative infection groups. Of these, 6 each were extended spectrum B-lactamase producers and AmpC producers. There were no carbapenemase producing Enterobacterales. Kingella kingae was not isolated in any patient.

Methicillin sensitive S. aureus is the most common infecting organism in paediatric OAI and an anti-staphylococcal penicillin such as cloxacillin or flucloxacillin is the most appropriate empiric treatment for haematogenous OAI in our environment. In fracture related or post-operative infections, Enterobacterales were more frequently cultured, and treatment should be guided by culture and susceptibility results.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 91 - 91
23 Feb 2023
Cecchi S Aujla R Edwards P Ebert J Annear P Ricciardo B D'Alessandro P
Full Access

Avulsion of the proximal hamstring tendon from the ischial tuberosity is an uncommon but significant injury. Recent literature has highlighted that functional results are superior with surgical repair over non-surgical treatment. Limited data exists regarding the optimal rehabilitation regime in post-operative patients. The aim of this study was to investigate the early interim patient outcomes following repair of proximal hamstring tendon avulsions between a traditionally conservative versus an accelerated rehabilitation regimen.

In this prospective randomised controlled trial (RCT) 50 patients underwent proximal hamstring tendon avulsion repair, and were randomised to either a braced, partial weight-bearing (PWB) rehabilitation regime (CR = 25) or an accelerated, unbraced, immediate full weight-bearing (FWB) regime (AR group; n = 25). Patients were evaluated preoperatively and at 3 months after surgery, using the Lower Extremity Functional Scale (LEFS), Perth Hamstring Assessment Tool (PHAT), visual analog pain scale (VASP), Tegner score, and 12-item Short Survey Form (SF-12). Patients also filled in a diary questioning postoperative pain at rest from Day 2, until week 6 after surgery. Primary analysis was by per protocol and based on linear mixed models.

Both groups, with respect to patient and characteristics were matched at baseline. Over three months, five complications were reported (AR = 3, CR = 2). At 3 months post-surgery, significant improvements (p<0.001) were observed in both groups for all outcomes except the SF-12 MCS (P = 0.623) and the Tegner (P = 0.119). There were no significant between-group differences from baseline to 3 months for any outcomes, except for the SF-12 PCS, which showed significant effects favouring the AR regime (effect size [ES], 0.76; 95% CI, 1.2-13.2; P = .02).

Early outcomes in an accelerated rehabilitation regimen following surgical repair of proximal hamstring tendon avulsions, was comparable to a traditionally conservative rehabilitation pathway, and resulted in better physical health-related quality of life scores at 3 months post-surgery. Further long term follow up and functional assessment planned as part of this study.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 71 - 71
17 Apr 2023
Cochrane I Hussain A Kang N Chaudhury S
Full Access

During the COVID-19 pandemic, video/phone consultations (VPC) were increasingly utilised as an alternative to face-to-face (F2F) consultations, to minimise nosocomial viral exposure. We previously demonstrated that VPCs were highly rated by both patients and clinicians. This study compared satisfaction between both clinic modalities in contemporaneously delivered outpatient surveys. We also assessed the feasibility and effects of converting F2F orthopaedic consultations to VPC.

Surveys were posted to patients who attended VPCs and F2F consultations at a large tertiary centre from August to October 2020 inclusive, across 51 specialties. F2F and VPC patients ranked their overall satisfaction with their consultation on a 10-point numerical scale (10=highest satisfaction). Simultaneously, a pilot study was undertaken of outpatient fracture clinics to identify patients suitable for VPCs, with X-rays (if needed) taken and transferred from satellite sites to reduce tertiary centre footfall.

For F2F consultations, 1419 of 4465 surveys (31.8%) were returned with similar rates for VPCs (1332 of 4572, 29.1%). While mean satisfaction ratings were high for both clinic modalities, they were significantly higher for F2F: 9.13 (95% CI 9.05-9.22) for F2F clinics, compared to 8.23 (95% CI 8.11-8.35) for VPCs (p<0.001, t-test). F2F patients were almost four times more likely to state a preference for future F2F appointments compared to VPCs, whereas patients who attended VPCs showed an equal preference for either option (p< 0.001, chi2 test). 53% of 111 fracture clinic patients sampled were identified as suitable for VPCs. 1 patient (1.7%) requested their VPC to be converted to F2F due to poor symptom control.

Our study showed patients reported high satisfaction ratings for both F2F clinics and VPCs, with prior experience of VPCs affecting patients’ future preferences. Only 1.7% of F2F patients converted to VPCs declined their virtual appointment. Our results support future use of VPCs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 92 - 92
23 Feb 2023
Lee S Lin J Lynch J Smith P
Full Access

Dysmorphic pelves are a known risk factor for malpositioned iliosacral screws. Improved understanding of pelvic morphology will minimise the risk of screw misplacement, neurovascular injuries and failed fixation. Existing classifications for sacral anatomy are complex and impractical for clinical use. We propose a CT-based classification using variations in pelvic anatomy to predict the availability of transosseous corridors across the sacrum. The classification aims to refine surgical planning which may reduce the risk of surgical complications.

The authors postulated 4 types of pelves. The “superior most point of the sacroiliac joint” (sSIJ) typically corresponds with the mid-lower half of the L5 vertebral body. Hence, “the anterior cortex of L5” (L5a) was divided to reference 3 distinct pelvic groups. A 4th group is required to represent pelves with a lumbosacral transitional vertebra. The proposed classification:

A – sSIJ is above the midpoint of L5a

B – sSIJ is between the midpoint and the lowest point of L5a

C – sSIJ is below the lowest point of L5a

D – pelves with a lumbosacral transitional vertebra

Specific measures such as the width of the S1 and S2 axial and coronal corridors and the S1 lateral mass angles were used to differentiate between pelvic types.

Three-hundred pelvic CT scans were classified into their respective types. Analysis of the specific measures mentioned above illustrated the significant difference between each pelvic type. Changes in the size of S1 and S2 axial corridors formed a pattern that was unique for each pelvic type. The intra- and inter-observer ratings were 0.97 and 0.95 respectively.

Distinct relationships between the sizes of S1 and S2 axial corridors informed our recommendations on trans-sacral or iliosacral fixation, number and orientation of screws for each pelvic type. This classification utilises variations in the posterior pelvic ring to offer a planning guide for the insertion of iliosacral screws.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 25 - 25
11 Apr 2023
Richter J Ciric D Kalchschmidt K D'Aurelio C Pommer A Dauwe J Gueorguiev B
Full Access

Reorientating pelvic osteotomies are performed to improve femoral head coverage and secondary degenerative arthritis. A rectangular triple pelvic innominate osteotomy (3PIO) is performed in symptomatic cases. However, deciding optimal screw fixation type to avoid complications is questionable. Therefore, this study aimed to investigate the biomechanical behavior of two different acetabular screw configurations used for rectangular 3PIO osteosynthesis. It was hypothesized that bi-directional screw fixation would be biomechanically superior to mono-axial screw fixation technique.

A rectangular 3PIO was performed in twelve right-side artificial Hemi-pelvises. Group 1 (G1) had two axial and one transversal screw in a bi-directional orientation. Group 2 (G2) had three screws in the axial direction through the iliac crest. Acetabular fragment was reoriented to 10.5° inclination in coronal plane, and 10.0° increased anteversion along axial plane. Specimens were biomechanically tested until failure under progressively increasing cyclic loading at 2Hz, starting at 50N peak compression, increasing 0.05N/cycle. Stiffness was calculated from machine data. Acetabular anteversion, inclination and medialization were evaluated from motion tracking data from 250-2500 at 250 cycle increments. Failure cycles and load were evaluated for 5° change in anteversion.

Stiffness was higher in G1 (56.46±19.45N/mm) versus G2 (39.02±10.93N/mm) but not significantly, p=0.31. Acetabular fragment anteversion, inclination and medialization increased significantly each group (p≤0.02) and remained non-significantly different between the groups (p≥0.69). Cycles to failure and failure load were not significantly different between G1 (4406±882, 270.30±44.10N) and G2 (5059±682, 302.95±34.10N), p=0.78.

From a biomechanical perspective, the present study demonstrates that a bi-directional screw orientation does not necessarily advantageous versus mono-axial alignment when the latter has all three screws evenly distributed over the osteotomy geometry. Moreover, the 3PIO fixation is susceptible to changes in anteversion, inclination and medialization of the acetabular fragment until the bone is healed. Therefore, cautious rehabilitation with partial weight-bearing is recommended.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 123 - 123
11 Apr 2023
Ghaffari A Rahbek O Lauritsen R Kappel A Rasmussen J Kold S
Full Access

The tendency towards using inertial sensors for remote monitoring of the patients at home is increasing. One of the most important characteristics of the sensors is sampling rate. Higher sampling rate results in higher resolution of the sampled signal and lower amount of noise. However, higher sampling frequency comes with a cost. The main aim of our study was to determine the validity of measurements performed by low sampling frequency (12.5 Hz) accelerometers (SENS) in patients with knee osteoarthritis compared to standard sensor-based motion capture system (Xsens). We also determined the test-retest reliability of SENS accelerometers.

Participants were patients with unilateral knee osteoarthritis. Gait analysis was performed simultaneously by using Xsens and SENS sensors during two repetitions of over-ground walking at a self-selected speed. Gait data from Xsens were used as an input for AnyBody musculoskeletal modeling software to measure the accelerations at the exact location of two defined virtual sensors in the model (VirtualSENS). After preprocessing, the signals from SENS and VirtualSENS were compared in different coordinate axes in time and frequency domains. ICC for SENS data from first and second trials were calculated to assess the repeatability of the measurements.

We included 32 patients (18 females) with median age 70.1[48.1 – 85.4]. Mean height and weight of the patients were 173.2 ± 9.6 cm and 84.2 ± 14.7 kg respectively. The correlation between accelerations in time domain measured by SENS and VirtualSENS in different axes was r = 0.94 in y-axis (anteroposterior), r = 0.91 in x-axis (vertical), r = 0.83 in z-axis (mediolateral), and r = 0.89 for the magnitude vector. In frequency domain, the value and the power of fundamental frequencies (F0) of SENS and VirtualSENS signals demonstrated strong correlation (r = 0.98 and r = 0.99 respectively). The result of test-retest evaluation showed excellent repeatability for acceleration measurement by SENS sensors. ICC was between 0.89 to 0.94 for different coordinate axes.

Low sampling frequency accelerometers can provide valid and reliable measurements especially for home monitoring of the patients, in which handling big data and sensors cost and battery lifetime are among important issues.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 121 - 121
4 Apr 2023
Kale S Mehra S Gunjotikar A Patil R Dhabalia P Singh S
Full Access

Osteochondromas are benign chondrogenic lesions arising on the external surface of the bone with aberrant cartilage (exostosis) from the perichondral ring that may contain a marrow cavity also. In a few cases, depending on the anatomical site affected, different degrees of edema, redness, paresthesia, or paresis can take place due to simple contact or friction. Also, depending on their closeness to neurovascular structures, the procedure of excision becomes crucial to avoid recurrence. We report a unique case of recurrent osteochondroma of the proximal humerus enclosing the brachial artery which makes for an important case and procedure to ensure that no relapse occurs.

We report a unique case of a 13-year-old female who had presented with a history of pain and recurrent swelling for 5 years. The swelling size was 4.4 cm x 3.7 cm x 4 cm with a previous history of swelling at the same site operated in 2018. CT reports were suggestive of a large well defined broad-based exophytic diaphyseal lesion in the medial side of the proximal humerus extending posteriorly. Another similar morphological lesion measuring approximately 9 mm x 7 mm was noted involving the posterior humeral shaft. The minimal distance between the lesion and the brachial artery was 2 mm just anterior to the posterio-medial growth. Two intervals were made, first between the tumor and the neurovascular bundle and the other between the anterior tumor and brachial artery followed by exostosis and cauterization of the base.

Proper curettage and excision of the tumor was done after dissecting and removing the soft tissue, blood vessels, and nerves so that there were very less chances of relapse. Post-operative X-ray was done and post 6 months of follow-up, there were no changes, and no relapse was observed. Thus, when presented with a case of recurrent osteochondroma of the proximal humerus, osteochondroma could also be in proximity to important vasculature as in this case enclosing the brachial artery. Thus, proper curettage and excision should be done in such cases to avoid recurrence.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 129 - 129
4 Apr 2023
Adla P Iqbal A Sankar S Mehta S Raghavendra M
Full Access

Intraoperative fractures although rare are one of the complications known to occur while performing a total hip arthroplasty (THA). However, due to lower incidence rates there is currently a gap in this area of literature that systematically reviews this important issue of complications associated with THA.

Method: We looked into Electronic databases including PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), the archives of meetings of orthopaedic associations and the bibliographies of included articles and asked experts to identify prospective studies, published in any language that evaluated intra-operative fractures occurring during total hip arthroplasty from the year 1950-2020. The screening, data extraction and quality assessment were carried out by two researchers and if there was any discrepancy, a third reviewer was involved.

Fourteen studies were identified. The reported range of occurrence of fracture while performing hip replacement surgery was found to be 0.4-7.6%. Major risk factors identified were surgical approaches, Elderly age, less Metaphyseal-Diaphyseal Index score, change in resistance while insertion of the femur implants, inexperienced surgeons, uncemented femoral components, use of monoblock elliptical components, implantation of the acetabular components, patients with ankylosing spondylitis, female gender, uncemented stems in patients with abnormal proximal femoral anatomy and with cortices, different stem designs, heterogeneous fracture patterns and toothed design.

Intraoperative fractures during THA were managed with cerclage wire, femoral revision, intramedullary nail and cerclage wires, use of internal fixation plates and screws for management of intra operative femur and acetabular fractures.

The main reason for intraoperative fracture was found to be usage of cementless implants but planning and timely recognition of risk factors and evaluating them is important in management of intraoperative fractures. Adequate surgical site exposure is critical especially during dislocation of hip, reaming of acetabulum, impaction of implant and preparing the femoral canal for stem insertion. Eccentric and increased reaming of acetabulum to accommodate a larger cup is to be avoided, especially in females and elderly patients as the acetabulum is thinner. However, this area requires more research in order to obtain more evidence on effectiveness, safety and management of intraoperative fractures during THA.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 73 - 73
17 Apr 2023
Condell R Flanagan C Kearns S Murphy C
Full Access

Despite considerable legacy issues, Girdlestone's Resection Arthroplasty (GRA) remains a valuable tool in the armoury of the arthroplasty surgeon. When reserved for massive lysis in the context of extensive medical comorbidities which preclude staged or significant surgical interventions, and / or the presence of pelvic discontinuity, GRA as a salvage procedure can have satisfactory outcomes. These outcomes include infection control, pain control and post-op function. We describe a case series of 13 cases of GRA and comment of the indications, peri, and post-operative outcomes.

We reviewed all cases of GRA performed in our unit during an 8 year period, reviewing the demographics, indications, and information pertaining to previous surgeries, and post op outcome for each. Satisfaction was based on a binary summation (happy/unhappy) of the patients’ sentiments at the post-operative outpatient consultations.

13 cases were reviewed. They had a mean age of 75. The most common indication was PJI, with 10 cases having this indication. The other three cases were performed for avascular necrosis, pelvic osteonecrosis secondary to radiation therapy and end stage arthritis on a background of profound learning disability in a non-ambulatory patient. The average number of previous operations was 5 (1-10). All 13 patients were still alive post girdlestone. 7 (54%) were satisfied, 6 were not. 3 patients were diabetic. 5 patients developed a sinus tract following surgery.

With sufficient pre-op patient education, early intensive physiotherapy, and timely orthotic input, we feel this procedure remains an important and underrated and even compassionate option in the context of massive lysis and / or the presence of pelvic discontinuity / refractory PJI. GRA should be considered not a marker of failure but as a definitive procedure that gives predictability to patients and surgeon in challenging situations.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 31 - 31
2 Jan 2024
Ernst M Windolf M Varjas V Gehweiler D Gueorguiev-Rüegg B Richards R
Full Access

In absence of available quantitative measures, the assessment of fracture healing based on clinical examination and X-rays remains a subjective matter. Lacking reliable information on the state of healing, rehabilitation is hardly individualized and mostly follows non evidence-based protocols building on common guidelines and personal experience. Measurement of fracture stiffness has been demonstrated as a valid outcome measure for the maturity of the repair tissue but so far has not found its way to clinical application outside the research space. However, with the recent technological advancements and trends towards digital health care, this seems about to change with new generations of instrumented implants – often unfortunately termed “smart implants” – being developed as medical devices.

The AO Fracture Monitor is a novel, active, implantable sensor system designed to provide an objective measure for the assessment of fracture healing progression (1). It consists of an implantable sensor that is attached to conventional locking plates and continuously measures implant load during physiological weight bearing. Data is recorded and processed in real-time on the implant, from where it is wirelessly transmitted to a cloud application via the patient's smartphone. Thus, the system allows for timely, remote and X-ray free provision of feedback upon the mechanical competence of the repair tissue to support therapeutic decision making and individualized aftercare.

The device has been developed according to medical device standards and underwent extensive verification and validation, including an in-vivo study in an ovine tibial osteotomy model, that confirmed the device's capability to depict the course of fracture healing as well as its long-term technical performance. Currently a multi-center clinical investigation is underway to demonstrate clinical safety of the novel implant system. Rendering the progression of bone fracture healing assessable, the AO Fracture Monitor carries potential to enhance today's postoperative care of fracture patients.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 79 - 79
4 Apr 2023
Mao J Ding Y Huang L Wang Q Ding L
Full Access

Previous studies showed that telo-peptides degraded from type II collagen, a type of collagen fragments, could induce cartilage damage in bovine stifle joints. We aim to investigate the role of integrins (ITGs) and matrix metalloproteinases (MMPs) in collagen fragment-induced human cartilage damage that is usually observed in osteoarthritis (OA). We hypothesized that N-telopeptide (NT) derived from type II collagen could up-regulate the expression of β1 integrin (ITGB1) and then MMPs that may lead to osteoarthritic cartilage damage.

Human chondrocytes were isolated from femoral head or tibial plateau of patients receiving arthroplasty (N = 24). Primary chondrocyte cultures were either treated with 30 µM NT, or 30 µM scrambled NT (SN), or PBS, or left untreated for 24 hrs. Total proteins and RNAs were extracted for examination of expression of ITGB1 and MMPs-3&13 with Western blotting and quantitative real-time PCR.

Compared to untreated or PBS treated chondrocytes, NT-treated chondrocytes expressed significantly higher levels of ITGB1 and MMPs-3&-13. However, SN also up-regulated expression of ITGB1 and MMP-13.

ITGB1 and MMPs-3&-13 might mediate the catalytic effect of NT, a type of collagen fragments, on human cartilage damage that is a hallmark of OA.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 80 - 80
23 Jun 2023
Halken CH Jensen CB Henkel C Gromov K Troelsen A
Full Access

The interest in day-case hip arthroplasty is increasing; however, there are conflicting results regarding readmission risk, and little is known about patients’ attitude towards day-case surgery. We aimed to investigate differences in 30-day readmission rates between day-case patients and single-overnight-stay patients following total hip arthroplasty (THA) and explore patients’ attitude towards day-case surgery.

From the Danish National Patient Register we identified 29,486 THAs (1353 day-case THAs and 28,133 single-overnight-stay THAs) performed between 2010 and 2020. Day-case surgery was defined as discharge on the day-of-surgery. Overnight admissions within 30 days of surgery were considered readmissions. Differences in readmission rates between day-case and single-overnight-stay patients were investigated using logistic regression adjusted for patient characteristics and year of surgery. In a single-center descriptive study, 2395 hip arthroplasty patients from 2016 to start-2023 answered a questionnaire on patient characteristics, attitude towards day-case surgery and patient-reported outcome measures (PROM).

The overall 30-day readmission rate was 4.4% (CI: 4.2–4.6%) with no difference between day-case (4.4%) and single-overnight-stay THAs (4.4%) (odds-ratio: 1.2 [CI: 0.91–1.6]). In the descriptive study answers to the question whether patients were interested in being discharged on the day of surgery, were: “Yes” = 41%, “Do not know” = 20%, “No” = 39%. Patients responding “No” had lower preoperative PROM-scores, were older (“No” = 70.2 y vs. “Yes” = 65.3 y), and more often female (“No” = 72% vs. “Yes” = 52% female).

Based on nationwide data from 2010–2020, day-case THA patients were not more likely to be readmitted compared to single-overnight-stay patients. However, most patients were not positive towards day-case surgery. While surgeons may consider day-case surgery to be safe, patients are not intuitively positive, indicating an attitude mismatch. To achieve high success rate and patient satisfaction in day-case surgery, shared-decision making initiatives within day-case surgery are needed.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 19 - 19
2 Jan 2024
Li R Zheng J Smith P Chen X
Full Access

Device-associated bacterial infections are a major and costly clinical challenge. This project aimed to develop a smart new biomaterial for implants that helps to protect against infection and inflammation, promote bone growth, and is biodegradable. Gallium (Ga) doped strontium-phosphate was coated on pure Magnesium (Mg) through a chemical conversion process. Mg was distributed in a graduated manner throughout the strontium-phosphate coating GaSrPO4, with a compact structure and a Ga-rich surface. We tested this sample for its biocompatibility, effects on bone remodeling and antibacterial activities including Staphylococcus aureus, S. epidermidis and E. coli - key strains causing infection and early failure of the surgical implantations in orthopaedics and trauma.

Ga was distributed in a gradient way throughout the entire strontium-phosphate coating with a compact structure and a gallium-rich surface. The GaSrPO4 coating protected the underlying Mg from substantial degradation in minimal essential media at physiological conditions over 9 days. The liberated Ga ions from the coatings upon Mg specimens inhibited the growth of bacterial tested. The Ga dopants showed minimal interferences with the SrPO4 based coating, which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures model.

The results evidenced this new material may be further translated to preclinical trial in large animal model and towards clinical trial.

Acknowledgements: Authors are grateful to the financial support from the Australian Research Council through the Linkage Scheme (ARC LP150100343). The authors acknowledge the facilities, and the scientific and technical assistance of the RMIT University and John Curtin School of Medical Research, Australian National University.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 20 - 20
17 Apr 2023
Reimers N Huynh T Schulz A
Full Access

The objectives of this study are to evaluate the impact of the CoVID-19 pandemic on the development of relevant emerging digital healthcare trends and to explore which digital healthcare trend does the health industry need most to support HCPs.

A web survey using 39 questions facilitating Five-Point Likert scales was performed from 1.8.2020 – 31.10.2020. Of 260 participants invited, 90 participants answered the questionnaire. The participants were located in the Hospital/HCP sector in 11.9%, in other healthcare sectors in 22.2%, in the pharmaceutical sector in 11.1%, in the medical device and equipment industry in 43.3%. The Five-Point Likert scales were in all cases fashioned as from 1 (strongly disagree) to 5 (strongly agree).

As the top 3 most impacted digital health care trends strongly impacted by CoVID-19, respondents named:

- remote management of patients by telemedicine, mean answer 4.44

- shared data governance under patient control, mean answer 3.80

- new virtual interaction between HCP´s and medical industry, mean answer 3.76

Respondents were asked which level of readiness of the healthcare system currently possess to cope with the current trend impacted by CoVID-19.

- Digital and efficient healthcare logistics, mean answer 1.54

- Integrated health care, mean answer 1.73

- Use of big data and artificial intelligence, mean answer 2.03

Asked if collaborative research in the form of digital data platforms for research data sharing and increasing collaboration with multi-centric consortia would have a positive impact on the healthcare sector, the agreement was high with a value of mean 4.10 on the scale.

We can conclude that the impact of COVID-19 appears to be a high agreement of necessary advances in digitalization in the health care sector and in the collaboration of HCPs with the health care industry. Health care professional are unsure, in how far the national health care sector is capable of transformation in healthcare logistics and integrated health care.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 72 - 72
11 Apr 2023
Stich T Kovářík T Křenek T Alt V Docheva D
Full Access

The goal was to analyze the cellular response, specifically the osteogenic capacity, of titanium (Ti) implants harbouring a novel laserbased-surface-structure with the overall aim: augmented osteointegration. Surface micro-/nanoproperties greatly influence cell behaviour at the tissue-implant-interface and subsequent osteointegration. We investigated Ti-materials subjected to a specially developed shifted-Laser-Surface-Texturing (sLST) technology and compared them to a standard roughening-technique (sand-blasting-acid-etching, SLA). The biological response was evaluated with hMSCs, which are naturally available at the bone-implant-interface. We hypothesized: the novel surface is beneficial for our three different (young/healthy-YH; aged/healthy-AH;aged/osteoporotic-OP) cohorts.

The sLST was performed using a SPI-G3-series laser (beam-wavelength=1064nm, pulse-duration=200ns). For the SLA surface, Ti was sandblasted, afterwards acid-etched (HCl/H2SO4). Three different hMSC cohorts were studied: YH: n=6,29±6; AH: n=5,79±5; OP: n=5,76±5 years (osteoporosis confirmed via DEXA-scan). OP hMSCs show e.g. ColI-deficient-matrix and decreased mineralization. Cells were examined for survival, cell proliferation and cytoskeleton arrangement. Osteogenic differentiation was carried out over 21 days, matrix mineralization was validated with Alizarin-Red-S-staining and quantification.

Laser-texturing generated precisely the desired microgeometry. On nanostructural level, differently-sized Ti-droplets were formed stochastically by laser-induced-Ti-plasma. Live/dead-/Actin-stainings showed comparable results for all cohorts and surfaces in terms of survival and cell shape. On Ti-materials, cell growth showed no significant difference between the 3 cohorts. Alizarin quantification revealed the highest levels on laser-textured-surfaces; highest value for YH, followed by AH, lastly OP; no significance between AH/YH, but between OP/YH (p<0.0001). However, mineralization of all cohorts cultured on laser-textured-surfaces increased significantly (p<0.0001) compared to respective SLA-group, with >20fold higher value in the OP-cohort (AH:11fold, YH:6fold).

The data proves the biocompatibility of the laser-structured-Ti for young+aged cohorts. Osteogenic differentiation was significantly augmented on laser-treated-Ti. Most intriguingly, OP-donors could reach manifold increased mineralization, suggesting the novel laser texturing can counteract the osteoporotic phenotype. As osteogenesis-enhancing capacities may be related to mechanisms controlling cellular shape/fate, further investigations referring to this are currently ongoing. In conclusion, our laser-textured-Ti-materials are safe, can have a demand-oriented designer-surface-topography and represent a great potential for development into next-generation-implants suitable for different patient-cohorts, especially osteoporosis patients.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 21 - 21
17 Apr 2023
Zioupos S Westacott D
Full Access

Flat-top talus (FTT) is a complication well-known to those treating clubfoot. Despite varying anecdotal opinions, its association with different treatments, especially the Ponseti method, remains uncertain. This systematic review aimed to establish the aetiology and prevalence of FTT, as well as detailing management strategies and their efficacy.

A systematic review was conducted according to PRISMA guidelines to search for articles using MEDLINE, EMBASE and Web of Science until November 2021. Studies with original data relevant to one of three questions were included: 1) Possible aetiology 2) Prevalence following different treatments 3) Management strategies and their outcomes.

32 original studies were included, with a total of 1473 clubfeet. FTT may be a pre-existing feature of the pathoanatomy of some clubfeet as well as a sequela of treatment. It can be a radiological artefact due to positioning or other residual deformity. The Ponseti method is associated with a higher percentage of radiologically normal tali (57%) than both surgical methods (52%) and non-Ponseti casting (29%). Only one study was identified that reported outcomes after surgical treatment for FTT (anterior distal tibial hemiepiphysiodesis).

The cause of FTT remains unclear. It is seen after all treatment methods but the rate is lowest following Ponseti casting. Guided growth may be an effective treatment.

Key words:

Clubfoot, Flat-top talus, Ponseti method, guided growth

Disclosures: The authors have no relevant disclosures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 15 - 15
11 Apr 2023
Li H Chen H
Full Access

Osteoporosis is a common problem in postmenopausal women and the elderly. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bi-directional enzyme that primarily activates glucocorticoids (GCs) in vivo, which is a considerable potential target as treatment for osteoporosis. Previous studies have demonstrated its effect on osteogenesis, and our study aimed to demonstrate its effect on osteoclast activation.

In vivo, we used 11β-HSD1 knock-off (KO) and C57BL6/J mice to undergo the ovariectomy-induced osteoporosis (OVX). In vitro, In vivo, We used 11β-HSD1 knockoff (KO) and C57BL6/J mice to undergo the ovariectomy-induced osteoporosis (OVX). In vitro, bone marrow-derived macrophages (BMM) and bone marrow mesenchymal stem cell (BMSC) of KO and C57BL6/J mice were extracted to test their osteogenic and osteoclastic abilities. We then created osteoclastic 11β-HSD1 elimination mice (Ctsk::11β-HSD1fl/fl) and treated them with OVX. Micro-CT analysis, H&E, immunofluorescence staining, and qPCR were performed. Finally, we conducted the high-throughput sequencing to find out 11β-HSD1 and osteoclast activation related genes.

We collected 6w samples after modeling. We found that KO mice were resistant to loss of bone trabeculae. The same effect was observed in osteoclastic 11β-HSD1 elimination mice. Meanwhile, BVT-2733, a classic inhibitor of 11β-HSD1, inhibited the osteoclast effect of cells without affecting osteogenic effect in vitro. High-throughput sequencing suggested that glucocorticoid receptor (GR) may play a key role in the activation of osteoclasts, which was verified by immunofluorescence staining and WB in vivo and in vitro.

In the process of osteoporosis, 11β-HSD1 expression of osteoclasts is abnormally increased, which may be a new target for inhibiting osteoclast activation and treating osteoporosis.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 16 - 16
11 Apr 2023
Buchholz A Łapaj Ł Herbster M Gehring J Bertrand J Lohmann C Döring J
Full Access

In 2020 almost 90% of femoral heads for total hip implants in Germany were made of ceramic. Nevertheless, the cellular interactions and abrasion mechanisms in vivo have not been fully understood until now. Metal transfer from the head-neck taper connection, occurring as smear or large-area deposit, negatively influences the surface quality of the articulating bearing. In order to prevent metal transfer, damage patterns of 40 Biolox delta ceramic retrievals with CoC and CoPE bearings were analysed.

A classification of damage type and severity for each component (n=40) was done according to an established scoring system. To investigate the physical properties, the surface quality was measured using confocal microscopy, quantitative analysis of phase composition were performed by Raman spectroscopy and qualitative analysis of metal traces was done by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The periprosthetic tissue was analysed for abrasion particles with SEM and EDX.

Both bearing types show different damage patterns. Dotted/ drizzled metal smears were identified in 82 % of CoC (n=16) and 96 % of CoPE (n=24) bearings. Most traces on the ceramic heads were identified in the proximal area while they were observed predominantly in the distal area for the ceramic inlays. The identified marks are similar to those of metallic bearings. Metallic smears lead to an increase of up to 30 % in the monoclinic crystalline phase of the ceramic. The roughness increases by up to six times to Ra=48 nm. Ceramic and metallic wear particles from the articulating surfaces or head neck taper junctions were found in the periprosthetic tissue.

Damage patterns on CoC hip implants seem to be similar to those of metallic implants. More detailed analysis of CoC implants are needed to understand the described damage patterns and provide advice for prevention.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 129 - 129
2 Jan 2024
Doyle S Winrow D Aregbesola T Martin J Pernevik E Kuzmenko V Howard L Thompson K Johnson M Coleman C
Full Access

In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces osteogenesis in bone marrow mesenchymal stem cells (MSCs), the cells responsible for maintaining bone homeostasis and orchestrating fracture repair. By 3D printing MSCs in coral-laden bioinks we utilise high throughput (HT) fabrication and evaluation of osteogenesis, overcoming the limitations of traditional screening methods.

MSC and coral-laden GelXA (CELLINK) bioinks were 3D printed in square bottom 96 well plates using a CELLINK BIO X printer with pneumatic adapter Samples were non-destructively monitored during the culture period, evaluating both the sample and the culture media for metabolism (PrestoBlue), cytotoxicity (lactose dehydrogenase (LDH)) and osteogenic differentiation (alkaline phosphatase (ALP)). Endpoint, destructive assays used included qRT-PCR and SEM imaging.

The inclusion of coral in the printed bioink was biocompatable with the MSCs, as reflected by maintained metabolism and low LDH release. The inclusion of coral induced osteogenic differentiation in the MSCs as seen by ALP secretion and increased RUNX2, collagen I and osteocalcin transcription.

Sustainably grown coral was successfully incorporated into bioinks, reproducibly 3D printed, non-destructively monitored throughout culture and induced osteogenic differentiation in MSCs. This HT fabrication and monitoring workflow offers a faster, less labour-intensive system for the translation of bone substitute materials to clinic.

Acknowledgements: This work was co-funded by Enterprise Ireland and Zoan Biomed through Innovation Partnership IP20221024.