Advertisement for orthosearch.org.uk
Results 1 - 20 of 242
Results per page:
Bone & Joint Open
Vol. 5, Issue 10 | Pages 944 - 952
25 Oct 2024
Deveza L El Amine MA Becker AS Nolan J Hwang S Hameed M Vaynrub M

Aims. Treatment of high-grade limb bone sarcoma that invades a joint requires en bloc extra-articular excision. MRI can demonstrate joint invasion but is frequently inconclusive, and its predictive value is unknown. We evaluated the diagnostic accuracy of direct and indirect radiological signs of intra-articular tumour extension and the performance characteristics of MRI findings of intra-articular tumour extension. Methods. We performed a retrospective case-control study of patients who underwent extra-articular excision for sarcoma of the knee, hip, or shoulder from 1 June 2000 to 1 November 2020. Radiologists blinded to the pathology results evaluated preoperative MRI for three direct signs of joint invasion (capsular disruption, cortical breach, cartilage invasion) and indirect signs (e.g. joint effusion, synovial thickening). The discriminatory ability of MRI to detect intra-articular tumour extension was determined by receiver operating characteristic analysis. Results. Overall, 49 patients underwent extra-articular excision. The area under the curve (AUC) ranged from 0.65 to 0.76 for direct signs of joint invasion, and was 0.83 for all three combined. In all, 26 patients had only one to two direct signs of invasion, representing an equivocal result. In these patients, the AUC was 0.63 for joint effusion and 0.85 for synovial thickening. When direct signs and synovial thickening were combined, the AUC was 0.89. Conclusion. MRI provides excellent discrimination for determining intra-articular tumour extension when multiple direct signs of invasion are present. When MRI results are equivocal, assessment of synovial thickening increases MRI’s discriminatory ability to predict intra-articular joint extension. These results should be interpreted in the context of the study’s limitations. The inclusion of only extra-articular excisions enriched the sample for true positive cases. Direct signs likely varied with tumour histology and location. A larger, prospective study of periarticular bone sarcomas with spatial correlation of histological and radiological findings is needed to validate these results before their adoption in clinical practice. Cite this article: Bone Jt Open 2024;5(10):944–952


Bone & Joint Open
Vol. 3, Issue 11 | Pages 913 - 920
18 Nov 2022
Dean BJF Berridge A Berkowitz Y Little C Sheehan W Riley N Costa M Sellon E

Aims. The evidence demonstrating the superiority of early MRI has led to increased use of MRI in clinical pathways for acute wrist trauma. The aim of this study was to describe the radiological characteristics and the inter-observer reliability of a new MRI based classification system for scaphoid injuries in a consecutive series of patients. Methods. We identified 80 consecutive patients with acute scaphoid injuries at one centre who had presented within four weeks of injury. The radiographs and MRI scans were assessed by four observers, two radiologists, and two hand surgeons, using both pre-existing classifications and a new MRI based classification tool, the Oxford Scaphoid MRI Assessment Rating Tool (OxSMART). The OxSMART was used to categorize scaphoid injuries into three grades: contusion (grade 1); unicortical fracture (grade 2); and complete bicortical fracture (grade 3). Results. In total there were 13 grade 1 injuries, 11 grade 2 injuries, and 56 grade 3 injuries in the 80 consecutive patients. The inter-observer reliability of the OxSMART was substantial (Kappa = 0.711). The inter-observer reliability of detecting an obvious fracture was moderate for radiographs (Kappa = 0.436) and MRI (Kappa = 0.543). Only 52% (29 of 56) of the grade 3 injuries were detected on plain radiographs. There were two complications of delayed union, both of which occurred in patients with grade 3 injuries, who were promptly treated with cast immobilization. There were no complications in the patients with grade 1 and 2 injuries and the majority of these patients were treated with early mobilization as pain allowed. Conclusion. This MRI based classification tool, the OxSMART, is reliable and clinically useful in managing patients with acute scaphoid injuries. Cite this article: Bone Jt Open 2022;3(11):913–920


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1343 - 1351
1 Dec 2022
Karlsson T Försth P Skorpil M Pazarlis K Öhagen P Michaëlsson K Sandén B

Aims. The aims of this study were first, to determine if adding fusion to a decompression of the lumbar spine for spinal stenosis decreases the rate of radiological restenosis and/or proximal adjacent level stenosis two years after surgery, and second, to evaluate the change in vertebral slip two years after surgery with and without fusion. Methods. The Swedish Spinal Stenosis Study (SSSS) was conducted between 2006 and 2012 at five public and two private hospitals. Six centres participated in this two-year MRI follow-up. We randomized 222 patients with central lumbar spinal stenosis at one or two adjacent levels into two groups, decompression alone and decompression with fusion. The presence or absence of a preoperative spondylolisthesis was noted. A new stenosis on two-year MRI was used as the primary outcome, defined as a dural sac cross-sectional area ≤ 75 mm. 2. at the operated level (restenosis) and/or at the level above (proximal adjacent level stenosis). Results. A total of 211 patients underwent surgery at a mean age of 66 years (69% female): 103 were treated by decompression with fusion and 108 by decompression alone. A two-year MRI was available for 176 (90%) of the eligible patients. A new stenosis at the operated and/or adjacent level occurred more frequently after decompression and fusion than after decompression alone (47% vs 29%; p = 0.020). The difference remained in the subgroup with a preoperative spondylolisthesis, (48% vs 24%; p = 0.020), but did not reach significance for those without (45% vs 35%; p = 0.488). Proximal adjacent level stenosis was more common after fusion than after decompression alone (44% vs 17%; p < 0.001). Restenosis at the operated level was less frequent after fusion than decompression alone (4% vs 14%; p = 0.036). Vertebral slip increased by 1.1 mm after decompression alone, regardless of whether a preoperative spondylolisthesis was present or not. Conclusion. Adding fusion to a decompression increased the rate of new stenosis on two-year MRI, even when a spondylolisthesis was present preoperatively. This supports decompression alone as the preferred method of surgery for spinal stenosis, whether or not a degenerative spondylolisthesis is present preoperatively. Cite this article: Bone Joint J 2022;104-B(12):1343–1351


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1333 - 1341
1 Nov 2024
Cheung PWH Leung JHM Lee VWY Cheung JPY

Aims. Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM. Methods. This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery. Results. A total of 2,114 individuals aged 64.6 years (SD 11.9) who underwent surgery from March 2009 to December 2016 were studied. The most optimal cut-off canal diameters for DcSS are: C3 < 12.9 mm, C4 < 11.8 mm, C5 < 11.9 mm, C6 < 12.3 mm, and C7 < 13.3 mm. Overall, 13.0% (262 of 2,019) of the population-based cohort had multilevel DcSS. Multilevel DcSS (odds ratio (OR) 6.12 (95% CI 3.97 to 9.42); p < 0.001) and male sex (OR 4.06 (95% CI 2.55 to 6.45); p < 0.001) were predictors of developing DCM. Conclusion. This is the first MRI-based study for defining DcSS with multilevel canal narrowing. Level-specific cut-off canal diameters for DcSS can be used for early identification of individuals at risk of developing DCM. Individuals with DcSS at ≥ three levels and male sex are recommended for close monitoring or early intervention to avoid traumatic spinal cord injuries from stenosis. Cite this article: Bone Joint J 2024;106-B(11):1333–1341


Bone & Joint Open
Vol. 2, Issue 6 | Pages 447 - 453
1 Jun 2021
Dean BJF Little C Riley ND Sellon E Sheehan W Burford J Hormbrey P Costa ML

Aims. To determine the role of early MRI in the management of suspected scaphoid fractures. Methods. A total of 337 consecutive patients presenting to an emergency department (ED) following wrist trauma over a 12-month period were prospectively included in this service evaluation project. MRI was not required in 62 patients with clear diagnoses, and 17 patients were not managed as per pathway, leaving a total of 258 patients with normal scaphoid series radiographs who were then referred directly from ED for an acute wrist MRI scan. Patient demographics, clinical details, outcomes, and complications were recorded at a minimum of a year following injury. Results. The median time from injury to ED presentation was one day and the median number of positive clinical signs was two out of three (snuffbox tenderness, tubercle tenderness, pain on telescoping). Of 258 patients referred for acute MRI, 208 scans were performed as 50 patients either did not tolerate (five patients) or did not attend their scan (45 patients). MRI scans demonstrated scaphoid fracture (13%), fracture of another bone (22%), scaphoid contusion (6%), other contusion/ligamentous injury (20%), or solely degenerative pathology (10%). Only 29% of scans showed no abnormality. Almost 50% of those undergoing MRI (100 patients) were discharged by ED with advice, with only one re-presentation. Of the 27 undisplaced occult scaphoid fractures, despite prompt cast immobilization, two experienced delayed union which was successfully treated with surgery. Conclusion. The use of MRI direct from ED enables prompt diagnosis and the early discharge of a large proportion of patients with normal radiographs following wrist trauma. Cite this article: Bone Jt Open 2021;2(6):447–453


Bone & Joint Open
Vol. 2, Issue 8 | Pages 569 - 575
1 Aug 2021
Bouguennec N Robinson J Douiri A Graveleau N Colombet PD

Aims. MRI has been suggested as an objective method of assessing anterior crucate ligament (ACL) graft “ligamentization” after reconstruction. It has been proposed that the MRI appearances could be used as an indicator of graft maturity and used as part of a return-to-sport assessment. The aim of this study was to evaluate the correlation between MRI graft signal and postoperative functional scores, anterior knee laxity, and patient age at operation. Methods. A consecutive cohort of 149 patients who had undergone semitendinosus autograft ACL reconstruction, using femoral and tibial adjustable loop fixations, were evaluated retrospectively postoperatively at two years. All underwent MRI analysis of the ACL graft, performed using signal-to-noise quotient (SNQ) and the Howell score. Functional outcome scores (Lysholm, Tegner, International Knee Documentation Committee (IKDC) subjective, and IKDC objective) were obtained and all patients underwent instrumented side-to-side anterior laxity differential laxity testing. Results. Two-year postoperative mean outcome scores were: Tegner 6.5 (2 to 10); Lysholm 89.8 (SD 10.4; 52 to 100); and IKDC subjective 86.8 (SD 11.8; 51 to 100). The objective IKDC score was 86% A (128 patients), 13% B (19 patients), and 1% C (two patients). Mean side-to-side anterior laxity difference (134 N force) was 0.6 mm (SD 1.8; -4.1 to 5.6). Mean graft SNQ was 2.0 (SD 3.5; -14 to 17). Graft Howell scores were I (61%, 91 patients), II (25%, 37 patients), III (13%, 19 patients), and IV (1%, two patients). There was no correlation between either Howell score or SNQ with instrumented anterior or Lysholm, Tegner, and IKDC scores, nor was any correlation found between patient age and ACL graft SNQ or Howell score. Conclusion. The two-year postoperative MRI appearances of four-strand, semitendinosus ACL autografts (as measured by SNQ and Howell score) do not appear to have a relationship with postoperative functional scores, instrumented anterior laxity, or patient age at surgery. Other tools for analysis of graft maturity should be developed. Cite this article: Bone Jt Open 2021;2(8):569–575


Bone & Joint Open
Vol. 2, Issue 11 | Pages 988 - 996
26 Nov 2021
Mohtajeb M Cibere J Mony M Zhang H Sullivan E Hunt MA Wilson DR

Aims. Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement. Methods. We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle. Results. In squatting, we found significantly decreased anterior femoroacetabular clearance in painful hips with cam and/or pincer morphologies (mean -11.3° (SD 19.2°)) compared to pain-free hips with cam and/or pincer morphologies (mean 8.5° (SD 14.6°); p = 0.022) and controls (mean 18.6° (SD 8.5°); p < 0.001). In sitting flexion, adduction, and internal rotation, we found significantly decreased anterior clearance in both painful (mean -15.2° (SD 15.3°); p = 0.002) and painfree hips (mean -4.7° (SD 13°); p = 0.010) with cam and/pincer morphologies compared to the controls (mean 7.1° (SD 5.9°)). Conclusion. Our results support the anterior femoroacetabular impingement pathomechanism in hips with cam and/or pincer morphologies and highlight the effect of posture on this pathomechanism. Cite this article: Bone Jt Open 2021;2(11):988–996


Bone & Joint Research
Vol. 2, Issue 1 | Pages 9 - 17
1 Jan 2013
Xia Y

This review briefly summarises some of the definitive studies of articular cartilage by microscopic MRI (µMRI) that were conducted with the highest spatial resolutions. The article has four major sections. The first section introduces the cartilage tissue, MRI and µMRI, and the concept of image contrast in MRI. The second section describes the characteristic profiles of three relaxation times (T. 1. , T. 2. and T. 1ρ. ) and self-diffusion in healthy articular cartilage. The third section discusses several factors that can influence the visualisation of articular cartilage and the detection of cartilage lesion by MRI and µMRI. These factors include image resolution, image analysis strategies, visualisation of the total tissue, topographical variations of the tissue properties, surface fibril ambiguity, deformation of the articular cartilage, and cartilage lesion. The final section justifies the values of multidisciplinary imaging that correlates MRI with other technical modalities, such as optical imaging. Rather than an exhaustive review to capture all activities in the literature, the studies cited in this review are merely illustrative


Bone & Joint Research
Vol. 3, Issue 8 | Pages 241 - 245
1 Aug 2014
Kanamoto T Shiozaki Y Tanaka Y Yonetani Y Horibe S

Objectives. To evaluate the applicability of MRI for the quantitative assessment of anterior talofibular ligaments (ATFLs) in symptomatic chronic ankle instability (CAI). Methods. Between 1997 and 2010, 39 patients with symptomatic CAI underwent surgical treatment (22 male, 17 female, mean age 25.4 years (15 to 40)). In all patients, the maximum diameters of the ATFLs were measured on pre-operative T2-weighted MR images in planes parallel to the path of the ATFL. They were classified into three groups based on a previously published method with modifications: ‘normal’, diameter = 1.0 - 3.2 mm; ‘thickened’, diameter > 3.2 mm; ‘thin or absent’, diameter < 1.0 mm. Stress radiography was performed with the maximum manual force in inversion under general anaesthesia immediately prior to surgery. In surgery, ATFLs were macroscopically divided into two categories: ‘thickened’, an obvious thickened ligament and ‘thin or absent’. The imaging results were compared with the macroscopic results that are considered to be of a gold standard. Results. Agreement was reached when comparison was made between groups, based on MRI and macroscopic findings. ATFLs were abnormal in all 39 cases and classified as ten ‘thickened’ and 29 ‘thin or absent’. As to talar tilt stress radiography, a clear cut-off angle, which would allow discrimination between ‘thickened’ and ‘thin or absent’ patients, was not identified. Conclusion. MRI is valuable as a pre-operative assessment tool that can provide the quantitative information of ATFLs in patients with CAI. Cite this article Bone Joint Res 2014;3:241–5


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 140 - 147
1 Feb 2023
Fu Z Zhang Z Deng S Yang J Li B Zhang H Liu J

Aims. Eccentric reductions may become concentric through femoral head ‘docking’ (FHD) following closed reduction (CR) for developmental dysplasia of the hip (DDH). However, changes regarding position and morphology through FHD are not well understood. We aimed to assess these changes using serial MRI. Methods. We reviewed 103 patients with DDH successfully treated by CR and spica casting in a single institution between January 2016 and December 2020. MRI was routinely performed immediately after CR and at the end of each cast. Using MRI, we described the labrum-acetabular cartilage complex (LACC) morphology, and measured the femoral head to triradiate cartilage distance (FTD) on the midcoronal section. A total of 13 hips with initial complete reduction (i.e. FTD < 1 mm) and ten hips with incomplete MRI follow-up were excluded. A total of 86 patients (92 hips) with a FTD > 1 mm were included in the analysis. Results. At the end of the first cast period, 73 hips (79.3%) had a FTD < 1 mm. Multiple regression analysis showed that FTD (p = 0.011) and immobilization duration (p = 0.028) were associated with complete reduction. At the end of the second cast period, all 92 hips achieved complete reduction. The LACC on initial MRI was inverted in 69 hips (75.0%), partly inverted in 16 hips (17.4%), and everted in seven hips (7.6%). The LACC became everted-congruent in 45 hips (48.9%) and 92 hips (100%) at the end of the first and second cast period, respectively. However, a residual inverted labrum was present in 50/85 hips (58.8%) with an initial inverted or partly inverted LACC. Conclusion. An eccentric reduction can become concentric after complete reduction and LACC remodelling following CR for DDH. Varying immobilization durations were required for achieving complete reduction. A residual inverted labrum was present in more than half of all hips after LACC remodelling. Cite this article: Bone Joint J 2023;105-B(2):140–147


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1331 - 1340
3 Oct 2020
Attard V Li CY Self A Mann DA Borthwick LA O’Connor P Deehan DJ Kalson NS

Aims. Stiffness is a common complication after total knee arthroplasty (TKA). Pathogenesis is not understood, treatment options are limited, and diagnosis is challenging. The aim of this study was to investigate if MRI can be used to visualize intra-articular scarring in patients with stiff, painful knee arthroplasties. Methods. Well-functioning primary TKAs (n = 11), failed non-fibrotic TKAs (n = 5), and patients with a clinical diagnosis of fibrosis. 1. (n = 8) underwent an MRI scan with advanced metal suppression (Slice Encoding for Metal Artefact Correction, SEMAC) with gadolinium contrast. Fibrotic tissue (low intensity on T1 and T2, low-moderate post-contrast enhancement) was quantified (presence and tissue thickness) in six compartments: supra/infrapatella, medial/lateral gutters, and posterior medial/lateral. Results. Fibrotic tissue was identified in all patients studied. However, tissue was significantly thicker in fibrotic patients (4.4 mm ± 0.2 mm) versus non-fibrotic (2.5 mm ± 0.4 mm) and normal TKAs (1.9 mm ± 0.2 mm, p = < 0.05). Significant (> 4 mm thick) tissue was seen in 26/48 (54%) of compartments examined in the fibrotic group, compared with 17/30 (57%) non-fibrotic, and 10/66 (15%) normal TKAs. Although revision surgery did improve range of movement (ROM) in all fibrotic patients, clinically significant restriction remained post-surgery. Conclusion. Stiff TKAs contain intra-articular fibrotic tissue that is identifiable by MRI. Studies should evaluate whether MRI is useful for surgical planning of debridement, and as a non-invasive measurement tool following interventions for stiffness caused by fibrosis. Revision for stiffness can improve ROM, but outcomes are sub-optimal and new treatments are required. Cite this article: Bone Joint J 2020;102-B(10):1331–1340


Bone & Joint Open
Vol. 5, Issue 2 | Pages 117 - 122
9 Feb 2024
Chaturvedi A Russell H Farrugia M Roger M Putti A Jenkins PJ Feltbower S

Aims. Occult (clinical) injuries represent 15% of all scaphoid fractures, posing significant challenges to the clinician. MRI has been suggested as the gold standard for diagnosis, but remains expensive, time-consuming, and is in high demand. Conventional management with immobilization and serial radiography typically results in multiple follow-up attendances to clinic, radiation exposure, and delays return to work. Suboptimal management can result in significant disability and, frequently, litigation. Methods. We present a service evaluation report following the introduction of a quality-improvement themed, streamlined, clinical scaphoid pathway. Patients are offered a removable wrist splint with verbal and written instructions to remove it two weeks following injury, for self-assessment. The persistence of pain is the patient’s guide to ‘opt-in’ and to self-refer for a follow-up appointment with a senior emergency physician. On confirmation of ongoing signs of clinical scaphoid injury, an urgent outpatient ‘fast’-wrist protocol MRI scan is ordered, with instructions to maintain wrist immobilization. Patients with positive scan results are referred for specialist orthopaedic assessment via a virtual fracture clinic. Results. From February 2018 to January 2019, there were 442 patients diagnosed as clinical scaphoid fractures. 122 patients (28%) self-referred back to the emergency department at two weeks. Following clinical review, 53 patients were discharged; MRI was booked for 69 patients (16%). Overall, six patients (< 2% of total; 10% of those scanned) had positive scans for a scaphoid fracture. There were no known missed fractures, long-term non-unions or malunions resulting from this pathway. Costs were saved by avoiding face-to-face clinical review and MRI scanning. Conclusion. A patient-focused opt-in approach is safe and effective to managing the suspected occult (clinical) scaphoid fracture. Cite this article: Bone Jt Open 2024;5(2):117–122


Bone & Joint Open
Vol. 2, Issue 8 | Pages 611 - 617
10 Aug 2021
Kubik JF Bornes TD Klinger CE Dyke JP Helfet DL

Aims. Surgical treatment of young femoral neck fractures often requires an open approach to achieve an anatomical reduction. The application of a calcar plate has recently been described to aid in femoral neck fracture reduction and to augment fixation. However, application of a plate may potentially compromise the regional vascularity of the femoral head and neck. The purpose of this study was to investigate the effect of calcar femoral neck plating on the vascularity of the femoral head and neck. Methods. A Hueter approach and capsulotomy were performed bilaterally in six cadaveric hips. In the experimental group, a one-third tubular plate was secured to the inferomedial femoral neck at 6:00 on the clockface. The contralateral hip served as a control with surgical approach and capsulotomy without fixation. Pre- and post-contrast MRI was then performed to quantify signal intensity in the femoral head and neck. Qualitative assessment of the terminal arterial branches to the femoral head, specifically the inferior retinacular artery (IRA), was also performed. Results. Quantitative MRI revealed a mean reduction of 1.8% (SD 3.1%) of arterial contribution in the femoral head and a mean reduction of 7.1% (SD 10.6%) in the femoral neck in the plating group compared to non-plated controls. Based on femoral head quadrant analysis, the largest mean decrease in arterial contribution was in the inferomedial quadrant (4.0%, SD 6.6%). No significant differences were found between control and experimental hips for any femoral neck or femoral head regions. The inferior retinaculum of Weitbrecht (containing the IRA) was directly visualized in six of 12 specimens. Qualitative MRI assessment confirmed IRA integrity in all specimens. Conclusion. Calcar femoral neck plating at the 6:00 position on the clockface resulted in minimal decrease in femoral head and neck vascularity, and therefore it may be considered as an adjunct to laterally-based fixation for reduction and fixation of femoral neck fractures, especially in younger patients. Cite this article: Bone Jt Open 2021;2(8):611–617


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims. Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. Methods. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm. 2. ) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations. Results. No obvious adverse events related to UPAL gel implantation were observed. Self-assessed clinical scores, including pain, symptoms, activities of daily living, sports activity, and quality of life, were improved significantly at three years after surgery. Defect filling was confirmed using second-look arthroscopy at 72 weeks. Significantly improved MRI scores were observed from 12 to 144 weeks postoperatively. Histological examination of biopsy specimens obtained at 72 weeks after implantation revealed an extracellular matrix rich in glycosaminoglycan and type II collagen in the reparative tissue. Histological assessment yielded a mean overall International Cartilage Regeneration & Joint Preservation Society II score of 69.1 points (SD 10.4; 50 to 80). Conclusion. This study provides evidence supporting the safety of acellular UPAL gel implantation in facilitating cartilage repair. Despite being a single-arm study, it demonstrated the efficacy of UPAL gel implantation, suggesting it is an easy-to-use, one-step method of cartilage tissue repair circumventing the need to harvest donor cells. Cite this article: Bone Joint J 2023;105-B(8):880–887


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 984 - 994
1 Aug 2019
Rua T Malhotra B Vijayanathan S Hunter L Peacock J Shearer J Goh V McCrone P Gidwani S

Aims. The aim of the Scaphoid Magnetic Resonance Imaging in Trauma (SMaRT) trial was to evaluate the clinical and cost implications of using immediate MRI in the acute management of patients with a suspected fracture of the scaphoid with negative radiographs. Patients and Methods. Patients who presented to the emergency department (ED) with a suspected fracture of the scaphoid and negative radiographs were randomized to a control group, who did not undergo further imaging in the ED, or an intervention group, who had an MRI of the wrist as an additional test during the initial ED attendance. Most participants were male (52% control, 61% intervention), with a mean age of 36.2 years (18 to 73) in the control group and 38.2 years (20 to 71) in the intervention group. The primary outcome was total cost impact at three months post-recruitment. Secondary outcomes included total costs at six months, the assessment of clinical findings, diagnostic accuracy, and the participants’ self-reported level of satisfaction. Differences in cost were estimated using generalized linear models with gamma errors. Results. The mean cost up to three months post-recruitment per participant was £542.40 (. sd. £855.20, n = 65) for the control group and £368.40 (. sd. £338.60, n = 67) for the intervention group, leading to an estimated cost difference of £174 (95% confidence interval (CI) -£30 to £378; p = 0.094). The cost difference per participant increased to £266 (95% CI £3.30 to £528; p = 0.047) at six months. Overall, 6.2% of participants (4/65, control group) and 10.4% of participants (7/67, intervention group) had sustained a fracture of the scaphoid (p = 0.37). In addition, 7.7% of participants (5/65, control group) and 22.4% of participants (15/67, intervention group) had other fractures diagnosed (p = 0.019). The use of MRI was associated with higher diagnostic accuracy both in the diagnosis of a fracture of the scaphoid (100.0% vs 93.8%) and of any other fracture (98.5% vs 84.6%). Conclusion. The use of immediate MRI in the management of participants with a suspected fracture of the scaphoid and negative radiographs led to cost savings while improving the pathway’s diagnostic accuracy and patient satisfaction. Cite this article: Bone Joint J 2019;101-B:984–994


Bone & Joint Research
Vol. 11, Issue 12 | Pages 881 - 889
1 Dec 2022
Gómez-Barrena E Padilla-Eguiluz N López-Marfil M Ruiz de la Reina R

Aims. Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs). Methods. A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy. Results. The mean preoperative lesion volume was 18.7% (SD 10.2%) of the femoral head. This reduced to 11.6% (SD 7.5%) after three months (p = 0.015) and 3.7% (SD 3%) after one year (p < 0.001). Bone regeneration in healed cases represented a mean 81.2% (SD 13.8%) of the initial lesion volume at one year. Non-healed cases (n = 1 stage progression; n = 3 THAs) still showed bone regeneration but this did not effectively decrease the ON volume. A lesion size under mean 10% (SD 6%) of the femoral head at three months predicted no ON stage progression at one year. Regeneration in the lateral femoral head (C2 under Japanese Investigation Committee (JCI) classification) and in the central and posterior regions of the head was predominant in cases without ON progression. Conclusion. Bone regeneration was observed in osteonecrotic femoral heads three months after expanded autologous BM-hMSC injection, and the volume and location of regeneration indicated the success of the therapy. Cite this article: Bone Joint Res 2022;11(12):881–889


Bone & Joint Open
Vol. 1, Issue 7 | Pages 364 - 369
10 Jul 2020
Aarvold A Lohre R Chhina H Mulpuri K Cooper A

Aims. Though the pathogenesis of Legg-Calve-Perthes disease (LCPD) is unknown, repetitive microtrauma resulting in deformity has been postulated. The purpose of this study is to trial a novel upright MRI scanner, to determine whether any deformation occurs in femoral heads affected by LCPD with weightbearing. Methods. Children affected by LCPD were recruited for analysis. Children received both standing weightbearing and supine scans in the MROpen upright MRI scanner, for coronal T1 GFE sequences, both hips in field of view. Parameters of femoral head height, width, and lateral extrusion of affected and unaffected hips were assessed by two independent raters, repeated at a one month interval. Inter- and intraclass correlation coefficients were determined. Standing and supine measurements were compared for each femoral head. Results. Following rigorous protocol development in healthy age-matched volunteers, successful scanning was performed in 11 LCPD-affected hips in nine children, with seven unaffected hips therefore available for comparison. Five hips were in early stage (1 and 2) and six were in late stage (3 and 4). The mean age was 5.3 years. All hips in early-stage LCPD demonstrated dynamic deformity on weightbearing. Femoral head height decreased (mean 1.2 mm, 12.4% decrease), width increased (mean 2.5 mm, 7.2% increase), and lateral extrusion increased (median 2.5 mm, 23% increase) on standing weightbearing MRI compared to supine scans. Negligible deformation was observed in contra-lateral unaffected hips, with less deformation observed in late-stage hips. Inter- and intraclass reliability for all measured parameters was good to excellent. Conclusion. This pilot study has described an effective novel research investigation for children with LCPD. Femoral heads in early-stage LCPD demonstrated dynamic deformity on weightbearing not previously seen, while unaffected hips did not. Expansion of this protocol will allow further translational study into the effects of loading hips with LCPD. Cite this article: Bone Joint Open 2020;1-7:364–369


Bone & Joint Research
Vol. 5, Issue 7 | Pages 294 - 300
1 Jul 2016
Nishioka H Nakamura E Hirose J Okamoto N Yamabe S Mizuta H

Objectives. The purpose of this study was to clarify the appearance of the reparative tissue on the articular surface and to analyse the properties of the reparative tissue after hemicallotasis osteotomy (HCO) using MRI T1ρ and T2 mapping. Methods. Coronal T1ρ and T2 mapping and three-dimensional gradient-echo images were obtained from 20 subjects with medial knee osteoarthritis. We set the regions of interest (ROIs) on the full-thickness cartilage of the medial femoral condyle (MFC) and medial tibial plateau (MTP) of the knee and measured the cartilage thickness (mm) and T1ρ and T2 relaxation times (ms). Statistical analysis of time-dependent changes in the cartilage thickness and the T1ρ and T2 relaxation times was performed using one-way analysis of variance, and Scheffe’s test was employed for post hoc multiple comparison. Results. The cartilage-like repair tissue appeared on the cartilage surface of the medial compartment post-operatively, and the cartilage thickness showed a significant increase between the pre-operative and one-year post-operative time points (MFC; p = 0.003, MTP; p < 0.001). The T1ρ values of the cartilage-like repair tissue showed no difference over time, however, the T2 values showed a significant decrease between the pre-operative and one-year post-operative time points (MFC; p = 0.004, MTP; p = 0.040). Conclusion. This study clarified that the fibrocartilage-like repair tissue appeared on the articular surface of the medial compartment after HCO as evidenced by MRI T1ρ and T2 mapping. Cite this article: H. Nishioka, E. Nakamura, J. Hirose, N. Okamoto, S. Yamabe, H. Mizuta. MRI T1ρ and T2 mapping for the assessment of articular cartilage changes in patients with medial knee osteoarthritis after hemicallotasis osteotomy. Bone Joint Res 2016;5:294–300. DOI: 10.1302/2046-3758.57.BJR-2016-0057.R1


Bone & Joint Open
Vol. 2, Issue 11 | Pages 926 - 931
9 Nov 2021
Houdek MT Wyles CC Smith JH Terzic A Behfar A Sierra RJ

Aims. Bone marrow-derived mesenchymal stem cells obtained from bone marrow aspirate concentrate (BMAC) with platelet-rich plasma (PRP), has been used as an adjuvant to hip decompression. Early results have shown promise for hip preservation in patients with osteonecrosis (ON) of the femoral head. The purpose of the current study is to examine the mid-term outcome of this treatment in patients with precollapse corticosteroid-induced ON of the femoral head. Methods. In all, 22 patients (35 hips; 11 males and 11 females) with precollapse corticosteroid-induced ON of the femoral head underwent hip decompression combined with BMAC and PRP. Mean age and BMI were 43 years (SD 12) and 31 kg/m² (SD 6), respectively, at the time of surgery. Survivorship free from femoral head collapse and total hip arthroplasty (THA) and risk factors for progression were evaluated at minimum five-years of clinical follow-up with a mean follow-up of seven years (5 to 8). Results. Survivorship free from femoral head collapse and THA for any reason was 84% and 67% at seven years postoperatively, respectively. Risk factors for conversion to THA included a high preoperative modified Kerboul angle (grade 3 or 4) based on preoperative MRI (hazard ratio (HR) 3.96; p = 0.047) and corticosteroid use at the time of decompression (HR 4.15; p = 0.039). The seven-year survivorship for patients with grade 1 or 2 Kerboul angles for conversion to THA for articular collapse, and THA for any reason, were 96% and 72%, respectively, versus THA for articular collapse and THA for any reason in patients with grade 3 or 4 Kerboul angles of 40% (p = 0.003) and 40% (p = 0.032). Conclusion. At seven years, hip decompression augmented with BMAC and PRP provided a 67% survivorship free from THA in patients with corticosteroid-induced ON. Ideal candidates for this procedure are patients with low preoperative Kerboul angles and can stop corticosteroid treatment prior to decompression. Cite this article: Bone Jt Open 2021;2(11):926–931


Bone & Joint Research
Vol. 5, Issue 3 | Pages 73 - 79
1 Mar 2016
Anwander H Cron GO Rakhra K Beaule PE

Objectives. Hips with metal-on-metal total hip arthroplasty (MoM THA) have a high rate of adverse local tissue reactions (ALTR), often associated with hypersensitivity reactions. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures tissue perfusion with the parameter Ktrans (volume transfer constant of contrast agent). Our purpose was 1) to evaluate the feasibility of DCE-MRI in patients with THA and 2) to compare DCE-MRI in patients with MoM bearings with metal-on-polyethylene (MoP) bearings, hypothesising that the perfusion index Ktrans in hips with MoM THA is higher than in hips with MoP THA. Methods. In this pilot study, 16 patients with primary THA were recruited (eight MoM, eight MoP). DCE-MRI of the hip was performed at 1.5 Tesla (T). For each patient, Ktrans was computed voxel-by-voxel in all tissue lateral to the bladder. The mean Ktrans for all voxels was then calculated. These values were compared with respect to implant type and gender, and further correlated with clinical parameters. Results. There was no significant difference between the two bearing types with both genders combined. However, dividing patients by THA bearing and gender, women with MoM bearings had the highest Ktrans values, exceeding those of women with MoP bearings (0.067 min. −1. versus 0.053 min. −1. ; p-value < 0.05) and men with MoM bearings (0.067 min. −1. versus 0.034 min. −1. ; p-value < 0.001). Considering only the men, patients with MoM bearings had lower Ktrans than those with MoP bearings (0.034 min. −1. versus 0.046 min. −1. ; p < 0.05). Conclusion. DCE-MRI is feasible to perform in tissues surrounding THA. Females with MoM THA show high Ktrans values in DCE-MRI, suggesting altered tissue perfusion kinematics which may reflect relatively greater inflammation. Cite this article: Dr P. E. Beaule. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty: A pilot stud. Bone Joint Res 2016;5:73–79. DOI: 10.1302/2046-3758.53.2000572