Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Knee

COMPLEMENTARY METHODS ARE NECESSARY TO CHARACTERIZE SURFACE-HARDENED JOINT REPLACEMENTS

The Knee Society (TKS) 2019 Members Meeting, Cape Neddick, ME, USA, 5–7 September 2019.



Abstract

Introduction

The association between CoCr joint replacements and adverse tissue reactions has led to increased interest in alternative materials that are both biocompatible and wear-resistant. One approach is to manufacture components from titanium alloys with a hardened articulating surface to increase resistance to scratching and surface damage caused by third-body particles. In this study we investigate methods for characterizing the performance of retrieved TiAlV components with nitrogen-hardened bearing surfaces.

Methods

Surface-hardened titanium knee implants (TiNidium) were retrieved from 18 patients (7.7 ±6.8 years) at revision surgery. After processing, the bearing surface of each component was characterized by stereomicroscopy, SEM, optical profilometry, and incremental nano-indentation hardness testing. A case-matched set of 18 CoCr components (6.7 ±5.6 years) were characterized for comparison.

Results

Each bearing surface was graded for microscopic damage classified as pitting, abrasion, scratching, and burnishing using an Injury Severity Score. The components were divided into slight, average, and severe damage groups based on the resulting ISS scores. Representative specimens from each group were then subjected to SEM imaging, 12 roughness measurements, and 3 incremental nano-indentation hardness tests.

Conclusion

There was no difference between the severity of surface damage of the hardened and CoCr components ((p=0.67); Table 1). The rate of surface damage was greatest in the first 2 years then decreased exponentially (Figure 1). Surface roughness (Ra) values were similar for both groups (TiAlV: 0.771um; CoCr: 0.884um) but decreased with the severity of visual damage in the TiNidium implants due to secondary burnishing of scratches. The hardness of the TiNidium implants varied with depth below the bearing surface in contrast to the CoCr controls in which hardness did not vary with depth (Figure 2). Our findings show that multiple complementary methods of are needed to adequately characterize the performance of surface hardened implants.

For figures, tables, or references, please contact authors directly.