Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

THE EFFECTS OF TIBIAL TRAY ROTATION AND POSTERIOR SLOPE ON KNEE KINEMATICS FOLOWING TOTAL KNEE REPLACEMENT



Abstract

Our aim was to determine the effects of tibial component malrotation and posterior slope on knee kinematics following Scorpio cruciate retaining total knee replacement in cadaver specimens.

The movements of the hip, thigh and lower leg were monitored in 3D using a validated infra-red Computer Navigation System via bone implanted trackers. Ten normal comparable cadaver specimens were mounted in a custom rig allowing 3D assessment of kinematics under various loading conditions. The specimens then underwent Navigated TKR as per normal operating surgical protocols however an augmented tibial component was implanted. This allowed the researchers to precisely modify the rotation of the tibial component around its predetermined central axis, as well as to alter the posterior slope of the component. A pneumatic cylinder was used to provide a simulated quadriceps extension force while the knee was tested with a variety of applied loads including anterior and posterior draw, abduction and adduction, internal and external rotation.

TKR kinematics are significantly different from those of the native knee (p< 0.05). Increasing tibial posterior slope resulted in an incremental posterior position of the femur (p< 0.05), deviation of the neutral path of motion (p< 0.05) and alteration of the normal AP envelope of laxity (p< 0.05). Tibial component malrotations over 10 degrees resulted in increasing deviations of the neutral movement path of motion (p< 0.05) without significantly affecting the envelope of laxity. Tibial component malrotations of more than 10 degrees, when combined with a posterior slope of six degrees or more, resulted in prosthetic subluxation under certain loading conditions.

This study has demonstrated significant differences in knee kinematics before and after total knee implantation. Increasing values of internal and external rotation, as well as posterior slope of the tibial tray resulted in further deviations of total knee kinematics from normal by altering the neutral path of motion and the soft tissue envelope, with combined misalignments resulting in the greatest deviations from normal with prosthetic subluxation in some cases. Deviations from normal kinematics may result in increased ligament tension and incongruence or dysfunction of the component articulations, with the generation of sheer forces in the gait cycle. These may contribute to premature wear and loosening. Surgeons should be aware of this when considering the addition of posterior slope or assessing tibial component positioning in TKR.

Correspondence should be addressed to Mr K Deep, Consultant Orthopaedic Surgeon, Golden Jubilee National Hospital NHS Trust, Beardmore Street, Clydebank, Glasgow G81 4HX, Scotland. Email: caosuk@gmail.com