Abstract
Polished, tapered stems are now widely used for cemented total hip replacement and many such designs have been introduced. However, a change in stem geometry may have a profound influence on stability. Stems with a wide, rectangular proximal section may be more stable than those which are narrower proximally. We examined the influence of proximal geometry on stability by comparing the two-year migration of the Exeter stem with a more recent design, the CPS-Plus, which has a wider shoulder and a more rectangular cross-section. The hypothesis was that these design features would increase rotational stability.
Both stems subsided approximately 1 mm relative to the femur during the first two years after implantation. The Exeter stem was found to rotate into valgus (mean 0.2°, sd 0.42°) and internally rotate (mean 1.28°, sd 0.99°). The CPS-Plus showed no significant valgus rotation (mean 0.2°, sd 0.42°) or internal rotation (mean −0.03°, sd 0.75°). A wider, more rectangular cross-section improves rotational stability and may have a better long-term outcome.