Abstract
Aims
Rotating-hinge knee prostheses are commonly used to reconstruct the distal femur after resection of a tumour, despite the projected long-term burden of reoperation due to complications. Few studies have examined the factors that influence their failure and none, to our knowledge, have used competing risk models to do so. The purpose of this study was to determine the risk factors for failure of a rotating-hinge knee distal femoral arthroplasty using the Fine-Gray competing risk model.
Methods
We retrospectively reviewed 209 consecutive patients who, between 1991 and 2016, had undergone resection of the distal femur for tumour and reconstruction using a rotating-hinge knee prosthesis. The study endpoint was failure of the prosthesis, defined as removal of the femoral component, the tibial component, or the bone-implant fixation; major revision (exchange of the femoral component, tibial component, or the bone-implant fixation); or amputation.
Results
Multivariate Fine-Gray regression analyses revealed different hazards for each Henderson failure mode: percentage of femoral resection (p = 0.001) and extent of quadriceps muscle resection (p = 0.005) for overall prosthetic failure; extent of quadriceps muscle resection (p = 0.002) and fixation of femoral component (p = 0.011) for type 2 failure (aseptic loosening); age (p = 0.009) and percentage of femoral resection (p = 0.019) for type 3 failure (mechanical failure); and type of joint resection (p = 0.037) for type 4 (infection) were independent predictors. A bone stem ratio of > 2.5 reliably predicted aseptic loosening.
Conclusion
We identified independent risk factors for overall and cause-specific prosthetic failure after rotating-hinge knee distal femoral arthroplasty using a competing risk Fine-Gray model. A bone stem ratio > 2.5 reliably predicts aseptic loosening. An accurate knowledge of the risks of distal femoral arthroplasty after resection for tumour assists surgical planning and managing patient expectations.
Cite this article: Bone Joint J 2021;103-B(8):1405–1413.