Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 141 - 144
1 Jan 2015
Hughes AW Clark D Carlino W Gosling O Spencer RF

Reported rates of dislocation in hip hemiarthroplasty (HA) for the treatment of intra-capsular fractures of the hip, range between 1% and 10%. HA is frequently performed through a direct lateral surgical approach. The aim of this study is to determine the contribution of the anterior capsule to the stability of a cemented HA through a direct lateral approach. . A total of five whole-body cadavers were thawed at room temperature, providing ten hip joints for investigation. A Thompson HA was cemented in place via a direct lateral approach. The cadavers were then positioned supine, both knee joints were disarticulated and a digital torque wrench was attached to the femur using a circular frame with three half pins. The wrench applied an external rotation force with the hip in extension to allow the hip to dislocate anteriorly. Each hip was dislocated twice; once with a capsular repair and once without repairing the capsule. Stratified sampling ensured the order in which this was performed was alternated for the paired hips on each cadaver. . Comparing peak torque force in hips with the capsule repaired and peak torque force in hips without repair of the capsule, revealed a significant difference between the ‘capsule repaired’ (mean 22.96 Nm, standard deviation (. sd. ) 4.61) and the ‘capsule not repaired’ group (mean 5.6 Nm, . sd. 2.81) (p < 0.001). Capsular repair may help reduce the risk of hip dislocation following HA. Cite this article: Bone Joint J 2015;97-B:141–4


Bone & Joint 360
Vol. 9, Issue 3 | Pages 44 - 45
1 Jun 2020
Das MA


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 345 - 348
1 Mar 1999
Ishii Y Tojo T Terajima K Terashima S Bechtold JE

We compared joint proprioception in 12 hips in 12 patients with hemiarthroplasty after fracture of the hip, in 12 hips in 11 patients with total hip arthroplasty because of osteoarthritis and in a control group of 12 age-matched patients with no clinical complaints. There was no significant difference (p = 0.05) in joint proprioception in any of the groups. There was no decrease in joint proprioception in the group with total hip arthroplasty compared with the hemiarthroplasty group or with the control group. Other factors such as stretch receptors in the adjacent tendons and muscles may have a greater influence on proprioception in the hip than the intracapsular components


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1578 - 1585
1 Dec 2014
Rankin KS Sprowson AP McNamara I Akiyama T Buchbinder R Costa ML Rasmussen S Nathan SS Kumta S Rangan A

Trauma and orthopaedics is the largest of the surgical specialties and yet attracts a disproportionately small fraction of available national and international funding for health research. With the burden of musculoskeletal disease increasing, high-quality research is required to improve the evidence base for orthopaedic practice. Using the current research landscape in the United Kingdom as an example, but also addressing the international perspective, we highlight the issues surrounding poor levels of research funding in trauma and orthopaedics and indicate avenues for improving the impact and success of surgical musculoskeletal research.

Cite this article: Bone Joint J 2014; 96-B:1578–85.


Bone & Joint Research
Vol. 1, Issue 2 | Pages 13 - 19
1 Feb 2012
Smith MD Baldassarri S Anez-Bustillos L Tseng A Entezari V Zurakowski D Snyder BD Nazarian A

Objectives

This study aims to assess the correlation of CT-based structural rigidity analysis with mechanically determined axial rigidity in normal and metabolically diseased rat bone.

Methods

A total of 30 rats were divided equally into normal, ovariectomized, and partially nephrectomized groups. Cortical and trabecular bone segments from each animal underwent micro-CT to assess their average and minimum axial rigidities using structural rigidity analysis. Following imaging, all specimens were subjected to uniaxial compression and assessment of mechanically-derived axial rigidity.


Bone & Joint Research
Vol. 1, Issue 5 | Pages 93 - 98
1 May 2012
Gill TK Taylor AW Hill CL Phillips PJ

Objectives

To assess the sensitivity and specificity of self-reported osteoporosis compared with dual energy X-ray absorptiometry (DXA) defined osteoporosis, and to describe medication use among participants with the condition.

Methods

Data were obtained from a population-based longitudinal study and assessed for the prevalence of osteoporosis, falls, fractures and medication use. DXA scans were also undertaken.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 701 - 705
1 May 2007
Thiele OC Eckhardt C Linke B Schneider E Lill CA

We investigated several factors which affect the stability of cortical screws in osteoporotic bone using 18 femora from cadavers of women aged between 45 and 96 years (mean 76). We performed bone densitometry to measure the bone mineral density of the cortical and cancellous bone of the shaft and head of the femur, respectively. The thickness and overall bone mass of the cortical layer of the shaft of the femur were measured using a microCT scanner. The force required to pull-out a 3.5 mm titanium cortical bone screw was determined after standardised insertion into specimens of the cortex of the femoral shaft.

A significant correlation was found between the pull-out strength and the overall bone mass of the cortical layer (r2 = 0.867, p < 0.01) and also between its thickness (r2 = 0.826, p < 0.01) and bone mineral density (r2 = 0.861, p < 0.01). There was no statistically significant correlation between the age of the donor and the pull-out force (p = 0.246), the cortical thickness (p = 0.199), the bone mineral density (p = 0.697) or the level of osteoporosis (p = 0.378).

We conclude that the overall bone mass, the thickness and the bone mineral density of the cortical layer, are the main factors which affect the stability of a screw in human female osteoporotic cortical bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 839 - 845
1 Jun 2007
Barsoum WK Patterson RW Higuera C Klika AK Krebs VE Molloy R

Dislocation remains a major concern after total hip replacement, and is often attributed to malposition of the components. The optimum position for placement of the components remains uncertain. We have attempted to identify a relatively safe zone in which movement of the hip will occur without impingement, even if one component is positioned incorrectly. A three-dimensional computer model was designed to simulate impingement and used to examine 125 combinations of positioning of the components in order to allow maximum movement without impingement. Increase in acetabular and/or femoral anteversion allowed greater internal rotation before impingement occurred, but decreases the amount of external rotation. A decrease in abduction of the acetabular components increased internal rotation while decreasing external rotation. Although some correction for malposition was allowable on the opposite side of the joint, extreme degrees could not be corrected because of bony impingement.

We introduce the concept of combined component position, in which anteversion and abduction of the acetabular component, along with femoral anteversion, are all defined as critical elements for stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 261 - 266
1 Feb 2005
Földhazy Z Arndt A Milgrom C Finestone A Ekenman I

Strains applied to bone can stimulate its development and adaptation. High strains and rates of strain are thought to be osteogenic, but the specific dose response relationship is not known. In vivo human strain measurements have been performed in the tibia to try to identify optimal bone strengthening exercises for this bone, but no measurements have been performed in the distal radial metaphysis, the most frequent site of osteoporotic fractures. Using a strain gauged bone staple, in vivo dorsal metaphyseal radial strains and rates of strain were measured in ten female patients during activities of daily living, standard exercises and falls on extended hands. Push-ups and falling resulted in the largest compression strains (median 1345 to 3146 με, equivalent to a 0.1345% to 0.3146% length change) and falling exercises in the largest strain rates (18 582 to 45 954 με/s). On the basis of their high strain and/or strain rates these or variations of these exercises may be appropriate for distal radial metaphyseal bone strengthening.