Advertisement for orthosearch.org.uk
Results 1 - 20 of 54
Results per page:
Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims. To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. Methods. The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm. 2. , 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens. Results. In the histopathological analysis, the macro-morphological grading scale showed a significant increase, while the histological score and cartilage repair scale of ESWT exhibited a significant decrease compared to OCD at the 8- and 12-week timepoints. At the 12-week follow-up, ESWT exhibited a significant improvement in the volume of damaged bone compared to OCD. Furthermore, immunohistochemistry analysis revealed a significant decrease in type I collagen and a significant increase in type II collagen within the newly formed hyaline cartilage following ESWT, compared to OCD. Finally, SRY-box transcription factor 9 (SOX9), aggrecan, and TGF-β, BMP-2, -3, -4, -5, and -7 were significantly higher in ESWT than in OCD at 12 weeks. Conclusion. ESWT promoted the effect of TGF-β/BMPs, thereby modulating the production of extracellular matrix proteins and transcription factor involved in the regeneration of articular cartilage and subchondral bone in an OCD rat model. Cite this article: Bone Joint Res 2024;13(7):342–352


Aims. Proliferation, migration, and differentiation of anterior cruciate ligament (ACL) remnant and surrounding cells are fundamental processes for ACL reconstruction; however, the interaction between ACL remnant and surrounding cells is unclear. We hypothesized that ACL remnant cells preserve the capability to regulate the surrounding cells’ activity, collagen gene expression, and tenogenic differentiation. Moreover, extracorporeal shock wave (ESW) would not only promote activity of ACL remnant cells, but also enhance their paracrine regulation of surrounding cells. Methods. Cell viability, proliferation, migration, and expression levels of Collagen-I (COL-I) A1, transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) were compared between ACL remnant cells untreated and treated with ESW (0.15 mJ/mm. 2. , 1,000 impulses, 4 Hz). To evaluate the subsequent effects on the surrounding cells, bone marrow stromal cells (BMSCs)’ viability, proliferation, migration, and levels of Type I Collagen, Type III Collagen, and tenogenic gene (Scx, TNC) expression were investigated using coculture system. Results. ESW-treated ACL remnant cells presented higher cell viability, proliferation, migration, and increased expression of COL-I A1, TGF-β, and VEGF. BMSC proliferation and migration rate significantly increased after coculture with ACL remnant cells with and without ESW stimulation compared to the BMSCs alone group. Furthermore, ESW significantly enhanced ACL remnant cells’ capability to upregulate the collagen gene expression and tenogenic differentiation of BMSCs, without affecting cell viability, TGF-β, and VEGF expression. Conclusion. ACL remnant cells modulated activity and differentiation of surrounding cells. The results indicated that ESW enhanced ACL remnant cells viability, proliferation, migration, and expression of collagen, TGF-β, VEGF, and paracrine regulation of BMSC proliferation, migration, collagen expression, and tenogenesis. Cite this article: Bone Joint Res 2020;9(8):457–467


Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims. The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Methods. Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro. Results. The expression of all fibrosis-related genes was higher in Db met(-) than in WT met(-) and was suppressed by metformin. Increased levels of fibrosis-related genes, posterior capsule thickness, and collagen density were observed in the capsules of db/db mice compared with those in WT mice; these effects were suppressed by metformin. Glucose addition increased fibrosis-related gene expression in both groups of mice in vitro. When glucose was added, metformin inhibited the expression of fibrosis-related genes other than cellular communication network factor 2 (Ccn2) in WT mouse cells. Conclusion. Hyperglycaemia promotes fibrosis in the mouse knee joint capsule, which is inhibited by metformin. These findings can help inform the development of novel strategies for treating knee joint capsule fibrosis. Cite this article: Bone Joint Res 2024;13(7):321–331


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims. Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. Methods. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm. 2. ) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations. Results. No obvious adverse events related to UPAL gel implantation were observed. Self-assessed clinical scores, including pain, symptoms, activities of daily living, sports activity, and quality of life, were improved significantly at three years after surgery. Defect filling was confirmed using second-look arthroscopy at 72 weeks. Significantly improved MRI scores were observed from 12 to 144 weeks postoperatively. Histological examination of biopsy specimens obtained at 72 weeks after implantation revealed an extracellular matrix rich in glycosaminoglycan and type II collagen in the reparative tissue. Histological assessment yielded a mean overall International Cartilage Regeneration & Joint Preservation Society II score of 69.1 points (SD 10.4; 50 to 80). Conclusion. This study provides evidence supporting the safety of acellular UPAL gel implantation in facilitating cartilage repair. Despite being a single-arm study, it demonstrated the efficacy of UPAL gel implantation, suggesting it is an easy-to-use, one-step method of cartilage tissue repair circumventing the need to harvest donor cells. Cite this article: Bone Joint J 2023;105-B(8):880–887


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 330 - 332
1 Mar 2005
Bartlett W Gooding CR Carrington RWJ Skinner JA Briggs TWR Bentley G

Autologous chondrocyte implantation (ACI) is a technique used for the treatment of symptomatic osteochondral defects of the knee. A variation of the original periosteum membrane technique is the matrix-induced autologous chondrocyte implantation (MACI) technique. The MACI membrane consists of a porcine type-I/III collagen bilayer seeded with chondrocytes. Osteochondral defects deeper than 8 to 10 mm usually require bone grafting either before or at the time of transplantation of cartilage. We have used a variation of Peterson’s ACI-periosteum sandwich technique using two MACI membranes with bone graft which avoids periosteal harvesting. The procedure is suture-free and requires less operating time and surgical exposure. We performed this MACI-sandwich technique on eight patients, five of whom were assessed at six months and one year post-operatively using the modified Cincinnati knee, the Stanmore functional rating and the visual analogue pain scores. All patients improved within six months with further improvement at one year. The clinical outcome was good or excellent in four after six months and one year. No significant graft-associated complications were observed. Our early results of the MACI-sandwich technique are encouraging although larger medium-term studies are required before there is widespread adoption of the technique


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 488 - 492
1 Apr 2012
Vijayan S Bartlett W Bentley G Carrington RWJ Skinner JA Pollock RC Alorjani M Briggs TWR

Matrix-induced autologous chondrocyte implantation (MACI) is an established technique used to treat osteochondral lesions in the knee. For larger osteochondral lesions (> 5 cm. 2. ) deeper than approximately 8 mm we have combined the use of two MACI membranes with impaction grafting of the subchondral bone. We report our results of 14 patients who underwent the ‘bilayer collagen membrane’ technique (BCMT) with a mean follow-up of 5.2 years (2 to 8). There were 12 men and two women with a mean age of 23.6 years (16 to 40). The mean size of the defect was 7.2 cm. 2. (5.2 to 12 cm. 2. ) and were located on the medial (ten) or lateral (four) femoral condyles. The mean modified Cincinnati knee score improved from 45.1 (22 to 70) pre-operatively to 82.8 (34 to 98) at the most recent review (p < 0.05). The visual analogue pain score improved from 7.3 (4 to 10) to 1.7 (0 to 6) (p < 0.05). Twelve patients were considered to have a good or excellent clinical outcome. One graft failed at six years. The BCMT resulted in excellent functional results and durable repair of large and deep osteochondral lesions without a high incidence of graft-related complications


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1331 - 1340
3 Oct 2020
Attard V Li CY Self A Mann DA Borthwick LA O’Connor P Deehan DJ Kalson NS

Aims

Stiffness is a common complication after total knee arthroplasty (TKA). Pathogenesis is not understood, treatment options are limited, and diagnosis is challenging. The aim of this study was to investigate if MRI can be used to visualize intra-articular scarring in patients with stiff, painful knee arthroplasties.

Methods

Well-functioning primary TKAs (n = 11), failed non-fibrotic TKAs (n = 5), and patients with a clinical diagnosis of fibrosis1 (n = 8) underwent an MRI scan with advanced metal suppression (Slice Encoding for Metal Artefact Correction, SEMAC) with gadolinium contrast. Fibrotic tissue (low intensity on T1 and T2, low-moderate post-contrast enhancement) was quantified (presence and tissue thickness) in six compartments: supra/infrapatella, medial/lateral gutters, and posterior medial/lateral.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims. Adenosine, lidocaine, and Mg. 2+. (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Methods. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed. Results. Despite comparable knee function, ALM-treated males had reduced systemic inflammation, synovial fluid angiogenic and pro-inflammatory mediators, synovitis, and fat pad fibrotic changes, compared to controls. Within the ACL graft, ALM-treated males had increased expression of tissue repair markers, decreased inflammation, increased collagen organization, and improved graft-bone healing. In contrast to males, females had no evidence of persistent systemic inflammation. Compared to controls, ALM-treated females had improved knee extension, gait biomechanics, and elevated synovial macrophage inflammatory protein-1 alpha (MIP-1α). Within the ACL graft, ALM-treated females had decreased inflammation, increased collagen organization, and improved graft-bone healing. In articular cartilage of ALM-treated animals, matrix metalloproteinase (MMP)-13 expression was blunted in males, while in females repair markers were increased. Conclusion. At 28 days, ALM therapy reduces inflammation, augments tissue repair patterns, and improves joint function in a sex-specific manner. The study supports transition to human safety trials. Cite this article: Bone Joint Res 2024;13(6):279–293


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 824 - 831
1 Jul 2019
Mahmoud EE Adachi N Mawas AS Deie M Ochi M

Aim. Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model. Materials and Methods. Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 10. 6. MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II. Results. Within the PBS injection (control group), typical progressive degenerative changes were revealed in the various knee structures. In the single MSC injection (single group), osteoarthritic changes were attenuated, but still appeared, especially in the medial compartments involving fibrillation of the articular cartilage, osteophyte formation in the medial plateau, and longitudinal tear of the meniscus. In the multiple-injections group, the smoothness and texture of the articular cartilage and meniscus were improved. Histologically, absence or reduction in matrix staining and cellularity were noticeable in the control and single-injection groups, respectively, in contrast to the multiple-injections group, which showed good intensity of matrix staining and chondrocyte distribution in the various cartilage zones. Osteoarthritis Research Society International (OARSI) scoring showed significantly better results in the multiple-injections group than in the other groups. Immunohistochemically, collagen I existed superficially in the medial femoral condyle in the single group, while collagen II was more evident in the multiple-injections group than the single-injection group. Conclusion. A single injection of MSCs was not enough to restore the condition of osteoarthritic joints. This is in contrast to multiple injections of MSCs, which had the ability to replace lost cells, as well as reducing inflammation. Cite this article: Bone Joint J 2019;101-B:824–831


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 62 - 67
1 Jan 2012
Aurich M Hofmann GO Mückley T Mollenhauer J Rolauffs B

We attempted to characterise the biological quality and regenerative potential of chondrocytes in osteochondritis dissecans (OCD). Dissected fragments from ten patients with OCD of the knee (mean age 27.8 years (16 to 49)) were harvested at arthroscopy. A sample of cartilage from the intercondylar notch was taken from the same joint and from the notch of ten patients with a traumatic cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes were extracted and subsequently cultured. Collagen types 1, 2, and 10 mRNA were quantified by polymerase chain reaction. Compared with the notch chondrocytes, cells from the dissecate expressed similar levels of collagen types 1 and 2 mRNA. The level of collagen type 10 message was 50 times lower after cell culture, indicating a loss of hypertrophic cells or genes. The high viability, retained capacity to differentiate and metabolic activity of the extracted cells suggests preservation of the intrinsic repair capability of these dissecates. Molecular analysis indicated a phenotypic modulation of the expanded dissecate chondrocytes towards a normal phenotype. Our findings suggest that cartilage taken from the dissecate can be reasonably used as a cell source for chondrocyte implantation procedures.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Bone & Joint Research
Vol. 3, Issue 6 | Pages 203 - 211
1 Jun 2014
Onur T Wu R Metz L Dang A

Objectives. Our objective in this article is to test the hypothesis that type 2 diabetes mellitus (T2DM) is a factor in the onset and progression of osteoarthritis, and to characterise the quality of the articular cartilage in an appropriate rat model. Methods. T2DM rats were obtained from the UC Davis group and compared with control Lewis rats. The diabetic rats were sacrificed at ages from six to 12 months, while control rats were sacrificed at six months only. Osteoarthritis severity was determined via histology in four knee quadrants using the OARSI scoring guide. Immunohistochemical staining was also performed as a secondary form of osteoarthritic analysis. Results. T2DM rats had higher mean osteoarthritis scores than the control rats in each of the four areas that were analysed. However, only the results at the medial and lateral femur and medial tibia were significant. Cysts were also found in T2DM rats at the junction of the articular cartilage and subchondral bone. Immunohistochemical analysis does not show an increase in collagen II between control and T2DM rats. Mass comparisons also showed a significant relationship between mass and osteoarthritis score. Conclusions. T2DM was found to cause global degeneration in the UCD rat knee joints, suggesting that diabetes itself is a factor in the onset and progression of osteoarthritis. The immunohistochemistry stains showed little to no change in collagen II degeneration between T2DM and control rats. Overall, it seems that the animal model used is pertinent to future studies of T2DM in the development and progression of osteoarthritis. Cite this article: Bone Joint Res 2014;3:203–11


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 640 - 645
1 May 2005
Bartlett W Skinner JA Gooding CR Carrington RWJ Flanagan AM Briggs TWR Bentley G

Autologous chondrocyte implantation (ACI) is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes. We have performed a prospective, randomised comparison of ACI-C and MACI for the treatment of symptomatic chondral defects of the knee in 91 patients, of whom 44 received ACI-C and 47 MACI grafts. Both treatments resulted in improvement of the clinical score after one year. The mean modified Cincinnati knee score increased by 17.6 in the ACI-C group and 19.6 in the MACI group (p = 0.32). Arthroscopic assessments performed after one year showed a good to excellent International Cartilage Repair Society score in 79.2% of ACI-C and 66.6% of MACI grafts. Hyaline-like cartilage or hyaline-like cartilage with fibrocartilage was found in the biopsies of 43.9% of the ACI-C and 36.4% of the MACI grafts after one year. The rate of hypertrophy of the graft was 9% (4 of 44) in the ACI-C group and 6% (3 of 47) in the MACI group. The frequency of re-operation was 9% in each group. We conclude that the clinical, arthroscopic and histological outcomes are comparable for both ACI-C and MACI. While MACI is technically attractive, further long-term studies are required before the technique is widely adopted


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 663 - 671
1 Jun 2022
Lewis E Merghani K Robertson I Mulford J Prentice B Mathew R Van Winden P Ogden K

Aims

Platelet-rich plasma (PRP) intra-articular injections may provide a simple and minimally invasive treatment for early-stage knee osteoarthritis (OA). This has led to an increase in its adoption as a treatment for knee OA, although there is uncertainty about its efficacy and benefit. We hypothesized that patients with early-stage symptomatic knee OA who receive multiple PRP injections will have better clinical outcomes than those receiving single PRP or placebo injections.

Methods

A double-blinded, randomized placebo-controlled trial was performed with three groups receiving either placebo injections (Normal Saline), one PRP injection followed by two placebo injections, or three PRP injections. Each injection was given one week apart. Outcomes were prospectively collected prior to intervention and then at six weeks, three months, six months, and 12 months post-intervention. Primary outcome measures were Knee Injury and Osteoarthritis Outcome Score (KOOS) and EuroQol five-dimension five-level index (EQ-5D-5L). Secondary outcomes included visual analogue scale for pain and patient subjective assessment of the injections.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 205 - 209
1 Feb 2012
Kadonishi Y Deie M Takata T Ochi M

We examined whether enamel matrix derivative (EMD) could improve healing of the tendon–bone interface following reconstruction of the anterior cruciate ligament (ACL) using a hamstring tendon in a rat model. ACL reconstruction was performed in both knees of 30 Sprague-Dawley rats using the flexor digitorum tendon. The effect of commercially available EMD (EMDOGAIN), a preparation of matrix proteins from developing porcine teeth, was evaluated. In the left knee joint the space around the tendon–bone interface was filled with 40 µl of EMD mixed with propylene glycol alginate (PGA). In the right knee joint PGA alone was used. The ligament reconstructions were evaluated histologically and biomechanically at four, eight and 12 weeks (n = 5 at each time point). At eight weeks, EMD had induced a significant increase in collagen fibres connecting to bone at the tendon–bone interface (p = 0.047), whereas the control group had few fibres and the tendon–bone interface was composed of cellular and vascular fibrous tissues. At both eight and 12 weeks, the mean load to failure in the treated specimens was higher than in the controls (p = 0.009). EMD improved histological tendon–bone healing at eight weeks and biomechanical healing at both eight and 12 weeks. EMD might therefore have a human application to enhance tendon–bone repair in ACL reconstruction


Bone & Joint Research
Vol. 10, Issue 4 | Pages 269 - 276
1 Apr 2021
Matsubara N Nakasa T Ishikawa M Tamura T Adachi N

Aims

Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in vitro and examine the therapeutic potential of this combination in an in vivo rabbit model of massive meniscus defect.

Methods

A total of 34 Japanese white rabbits (divided into defect and atelocollagen groups) were used to produce the massive meniscus defect model through a medial patellar approach. Cell migration and proliferation were evaluated using immunohistochemistry. Furthermore, histological evaluation of the sections was performed, and a modified Pauli’s scoring system was used for the quantitative evaluation of the regenerated meniscus.


Bone & Joint Research
Vol. 1, Issue 10 | Pages 238 - 244
1 Oct 2012
Naraoka T Ishibashi Y Tsuda E Yamamoto Y Kusumi T Kakizaki I Toh S

Objectives. This study aimed to investigate time-dependent gene expression of injured human anterior cruciate ligament (ACL), and to evaluate the histological changes of the ACL remnant in terms of cellular characterisation. Methods. Injured human ACL tissues were harvested from 105 patients undergoing primary ACL reconstruction and divided into four phases based on the period from injury to surgery. Phase I was < three weeks, phase II was three to eight weeks, phase III was eight to 20 weeks, and phase IV was ≥ 21 weeks. Gene expressions of these tissues were analysed in each phase by quantitative real-time polymerase chain reaction using selected markers (collagen types 1 and 3, biglycan, decorin, α-smooth muscle actin, IL-6, TGF-β1, MMP-1, MMP-2 and TIMP-1). Immunohistochemical staining was also performed using primary antibodies against CD68, CD55, Stat3 and phosphorylated-Stat3 (P-Stat3). . Results. Expression of IL-6 was mainly seen in phases I, II and III, collagen type 1 in phase II, MMP-1, 2 in phase III, and decorin, TGF-β1 and α-smooth muscle actin in phase IV. Histologically, degradation and scar formation were seen in the ACL remnant after phase III. The numbers of CD55 and P-Stat3 positive cells were elevated from phase II to phase III. . Conclusions. Elevated cell numbers including P-Stat3 positive cells were not related to collagens but to MMPs’ expressions


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1686 - 1694
1 Nov 2021
Yang H Kwak W Kang SJ Song E Seon J

Aims

To determine the relationship between articular cartilage status and clinical outcomes after medial opening-wedge high tibial osteotomy (MOHTO) for medial compartmental knee osteoarthritis at intermediate follow-up.

Methods

We reviewed 155 patients (155 knees) who underwent MOHTO from January 2008 to December 2016 followed by second-look arthroscopy with a mean 5.3-year follow-up (2.0 to 11.7). Arthroscopic findings were assessed according to the International Cartilage Repair Society (ICRS) Cartilage Repair Assessment (CRA) grading system. Patients were divided into two groups based on the presence of normal or nearly normal quality cartilage in the medial femoral condyle: good (second-look arthroscopic) status (ICRS grade I or II; n = 70), and poor (second-look arthroscopic) status (ICRS grade III or IV; n = 85) groups at the time of second-look arthroscopy. Clinical outcomes were assessed using the International Knee Documentation Committee (IKDC) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and 36-Item Short Form survey.


Bone & Joint Open
Vol. 2, Issue 8 | Pages 569 - 575
1 Aug 2021
Bouguennec N Robinson J Douiri A Graveleau N Colombet PD

Aims

MRI has been suggested as an objective method of assessing anterior crucate ligament (ACL) graft “ligamentization” after reconstruction. It has been proposed that the MRI appearances could be used as an indicator of graft maturity and used as part of a return-to-sport assessment. The aim of this study was to evaluate the correlation between MRI graft signal and postoperative functional scores, anterior knee laxity, and patient age at operation.

Methods

A consecutive cohort of 149 patients who had undergone semitendinosus autograft ACL reconstruction, using femoral and tibial adjustable loop fixations, were evaluated retrospectively postoperatively at two years. All underwent MRI analysis of the ACL graft, performed using signal-to-noise quotient (SNQ) and the Howell score. Functional outcome scores (Lysholm, Tegner, International Knee Documentation Committee (IKDC) subjective, and IKDC objective) were obtained and all patients underwent instrumented side-to-side anterior laxity differential laxity testing.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 6 | Pages 991 - 994
1 Nov 1999
Morgan-Jones RL Cross MJ

Thirty cruciate ligaments were retrieved from either cadavers or limbs which had been amputated. Each specimen was sectioned and stained to demonstrate the presence of collagen, nerves and vessels. All 30 specimens contained an interconnecting band of collagen fibres between the anterior and posterior cruciate ligaments. Vascular structures were present in all specimens and nerve fibres were identified in 26 (86%). We have called this structure the ‘intercruciate band’. The anterior and posterior cruciate ligaments should no longer be thought of in isolation, but together as a ‘cruciate complex’