Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone. Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft.Aims
Methods
The aim of this study was to evaluate the clinical and radiological outcomes of locking plate fixation, with and without an associated fibular strut allograft, for the treatment of displaced proximal humeral fractures in elderly osteoporotic patients. We undertook a retrospective comparison of two methods of fixation, using a locking plate without an associated fibular strut allograft (LP group) and with a fibular allograft (FA group) for the treatment of these fractures. The outcome was assessed for 52 patients in the LP group and 45 in the FA group, with a mean age of 74.3 years (52 to 89), at a mean follow-up of 14.2 months (12 to 19). The clinical results were evaluated using a visual analogue scale (VAS) score for pain, the Constant score, the American Shoulder and Elbow Surgeons (ASES) score, and the range of movement. Radiological results were evaluated using the neck-shaft angle (NSA) and humeral head height (HHH).Aims
Patients and Methods
The aim of this paper is to review the evidence relating to the
anatomy of the proximal femur, the geometry of the fracture and
the characteristics of implants and methods of fixation of intertrochanteric
fractures of the hip. Relevant papers were identified from appropriate clinical databases
and a narrative review was undertaken.Aims
Materials and Methods
External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.Objectives
Methods
Because of the contradictory body of evidence related to the
potential benefits of helical blades in trochanteric fracture fixation,
we studied the effect of bone compaction resulting from the insertion
of a proximal femoral nail anti-rotation (PFNA). We developed a subject-specific computational model of a trochanteric
fracture (31-A2 in the AO classification) with lack of medial support
and varied the bone density to account for variability in bone properties
among hip fracture patients.Objectives
Methods
We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm3) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.