Advertisement for orthosearch.org.uk
Results 1 - 20 of 22
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 598 - 606
1 May 2004
Daley B Doherty AT Fairman B Case CP

Wear debris was extracted from 21 worn hip and knee replacements. Its mutagenic effects were tested on human cells in tissue culture using the micronucleus assay and fluorescent in situ hybridisation. The extracted wear debris increased the level of micronuclei in a linear dose-dependent manner but with a tenfold difference between samples. The concentration of titanium +/− vanadium and aluminium within the wear debris was linearly related both to the level of centromere-positive micronuclei in tissue culture, indicating an aneuploid event, and to the level of aneuploidy in vivo in peripheral blood lymphocytes. The concentration of cobalt and chromium +/− nickel and molybdenum in the wear debris correlated with the total index of micronuclei in tissue culture, both centromere-positive and centromere-negative i.e. both chromosomal breakage and aneuploidy events. The results show that wear debris can damage chromosomes in a dose-dependent manner which is specific to the type of metal. The results from studies in vitro correlate with those in vivo and suggest that the wear debris from a worn implant is at least partly responsible for the chromosomal damage which is seen in vivo


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 6 | Pages 901 - 909
1 Aug 2000
Böhler M Mochida Y Bauer TW Plenk H Salzer M

We compared wear particles from two different designs of total hip arthroplasty with polycrystalline alumina-ceramic bearings of different production periods (group 1, before ISO 6474: group 2, according to ISO 6474). The neocapsules and interfacial connective tissue membranes were retrieved after mean implantation times of 131 months and 38 months, respectively. Specimen blocks were freed from embedding media, either methylmethacrylate or paraffin and digested in concentrated nitric acid. Particles were then counted and their sizes and composition determined by SEM and energy-dispersive x-ray analysis (EDXA).

The mean numbers and sizes of most alumina wear particles did not differ for both production periods, but the larger sizes of particle in group 1 point to more severe surface destruction. The increased metal wear in group 2 was apparently due to alumina-induced abrasion of the stems. In this study the concentrations of particles in the periprosthetic tissues were 2 to 22 times lower than those observed previously with polyethylene and alumina/polyethylene wear couples.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 340 - 344
1 Mar 1998
Besong AA Tipper JL Ingham E Stone MH Wroblewski BM Fisher J

Ultra-high-molecular-weight polyethylene (UHMWPE) components for total joint replacement generate wear particles which cause adverse biological tissue reactions leading to osteolysis and loosening. Sterilisation of UHMWPE components by gamma irradiation in air causes chain scissions which initiate a long-term oxidative process that degrades the chemical and mechanical properties of the polyethylene. Using a tri-pin-on-disc tribometer we studied the effect of ageing for ten years after gamma irradiation in air on the volumetric wear, particle size distribution and the number of particles produced by UHMWPE when sliding against a stainless-steel counterface.

The aged and irradiated material produced six times more volumetric wear and 34 times more wear particles per unit load per unit sliding distance than non-sterilised UHMWPE. Our findings indicate that oxidative degradation of polyethylene after gamma irradiation in air with ageing produces more wear.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1655 - 1659
1 Dec 2007
Anwar HA Aldam CH Visuvanathan S Hart AJ

The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal. We compared the doubling time of coagulase negative staphylococcus, Staphylococcus aureus and methicillin resistant S. aureus when cultured in either wear particles from a metal-on-metal hip simulator, wear particles from a metal-on-polyethylene hip simulator, metal ions in solution or a control. Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control. Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different wear debris. This experiment also shows that metal-on-metal hip wear debris is not bacteriocidal


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 133 - 141
1 Jan 2003
Kraft CN Diedrich O Burian B Schmitt O Wimmer MA

Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant


Bone & Joint Research
Vol. 4, Issue 3 | Pages 29 - 37
1 Mar 2015
Halim T Clarke IC Burgett-Moreno MD Donaldson TK Savisaar C Bowsher JG

Objectives. Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt–chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Methods. Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. . Results. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm. 3. /Mc, 4.1Â mm. 3. /Mc and 6.4 mm. 3. /Mc, respectively. . Conclusions. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29–37


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 288 - 291
1 Mar 2003
Sampathkumar K Jeyam M Evans CE Andrew JG

Aseptic loosening of orthopaedic implants is usually attributed to the action of wear debris from the prosthesis. Recent studies, however, have also implicated physical pressures in the joint as a further cause of loosening. We have examined the role of both wear debris and pressure on the secretion of two chemokines, MIP-1α and MCP-1, together with M-CSF and PGE2, by human macrophages in vitro. The results show that pressure alone stimulated the secretion of more M-CSF and PGE. 2. when compared with control cultures. Particles alone stimulated the secretion of M-CSF and PGE. 2. , when compared with unstimulated control cultures, but did not stimulate the secretion of the two chemokines. Exposure of macrophages to both stimuli simultaneously had no synergistic effect on the secretion of the chemokines, but both M-CSF and PGE. 2. were increased in a synergistic manner. Our findings suggest that pressure may be an initiating factor for the recruitment of cells into the periprosthetic tissue


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 475 - 482
1 May 1997
Allen MJ Myer BJ Millett PJ Rushton N

Particulate wear debris can induce the release of bone-resorbing cytokines from cultured macrophages and fibroblasts in vitro, and these mediators are believed to be the cause of the periprosthetic bone resorption which leads to aseptic loosening in vivo. Much less is known about the effects of particulate debris on the growth and metabolism of osteoblastic cells. We exposed two human osteoblast-like cell lines (SaOS-2 and MG-63) to particulate cobalt, chromium and cobalt-chromium alloy at concentrations of 0, 0.01, 0.1 and 1.0 mg/ml. Cobalt was toxic to both cell lines and inhibited the production of type-I collagen, osteocalcin and alkaline phosphatase. Chromium and cobalt-chromium were well tolerated by both cell lines, producing no cytotoxicity and no inhibition of type-I collagen synthesis. At the highest concentration tested (1.0 mg/ml), however, chromium inhibited alkaline phosphatase activity, and both chromium and cobalt-chromium alloy inhibited osteocalcin expression. Our results clearly show that particulate metal debris can modulate the growth and metabolism of osteoblastic cells in vitro. Reduced osteoblastic activity at the bone-implant interface may be an important mechanism by which particulate wear debris influences the pathogenesis of aseptic loosening in vivo


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 7 | Pages 1075 - 1081
1 Sep 2001
Doherty AT Howell RT Ellis LA Bisbinas I Learmonth ID Newson R Case CP

The long-term biological effects of wear debris are unknown. We have investigated whether there is any evidence of cumulative mutagenic damage in peripheral blood lymphocytes of patients undergoing revision arthroplasty of predominantly metal-on-plastic total hip replacements compared with those at primary arthroplasty. There was a threefold increase in aneuploidy and a twofold increase in chromosomal translocations which could not be explained by the confounding variables of smoking, gender, age and diagnostic radiographs. In the patients with TiVaAl prostheses there was a fivefold increase in aneuploidy but no increase in chromosomal translocations. By contrast, in patients with cobalt-chrome prostheses there was a 2.5-fold increase in aneuploidy and a 3.5-fold increase in chromosomal translocations. In six patients with stainless-steel prostheses there was no increase in either aneuploidy or chromosomal translocations. Our results suggest that future epidemiological studies of the putative long-term risks of joint replacement should take into account the type of alloy used in the prosthesis


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 441 - 447
1 Apr 2001
Rahbek O Overgaard S Lind M Bendix K Bünger C Søballe K

We have studied the beneficial effects of a hydroxyapatite (HA) coating on the prevention of the migration of wear debris along the implant-bone interface. We implanted a loaded HA-coated implant and a non-coated grit-blasted titanium alloy (Ti) implant in each distal femoral condyle of eight Labrador dogs. The test implant was surrounded by a gap communicating with the joint space and allowing access of joint fluid to the implant-bone interface. We injected polyethylene (PE) particles into the right knee three weeks after surgery and repeated this weekly for the following five weeks. The left knee received sham injections. The animals were killed eight weeks after surgery. Specimens from the implant-bone interface were examined under plain and polarised light. Only a few particles were found around HA-coated implants, but around Ti implants there was a large amount of particles. HA-coated implants had approximately 35% bone ingrowth, whereas Ti implants had virtually no bone ingrowth and were surrounded by a fibrous membrane. Our findings suggest that HA coating of implants is able to inhibit peri-implant migration of PE particles by creating a seal of tightly-bonded bone on the surface of the implant


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 155 - 162
1 Jan 1999
Nakashima Y Sun D Trindade MCD Chun LE Song Y Goodman SB Schurman DJ Maloney WJ Smith RL

Particulate wear debris is associated with periprosthetic inflammation and loosening in total joint arthroplasty. We tested the effects of titanium alloy (Ti-alloy) and PMMA particles on monocyte/macrophage expression of the C-C chemokines, monocyte chemoattractant protein-1 (MCP-1), monocyte inflammatory protein-1 alpha (MIP-1α), and regulated upon activation normal T expressed and secreted protein (RANTES). Periprosthetic granulomatous tissue was analysed for expression of macrophage chemokines by immunohistochemistry. Chemokine expression in human monocytes/macrophages exposed to Ti-alloy and PMMA particles in vitro was determined by RT-PCR, ELISA and monocyte migration. We observed MCP-1 and MIP-1α expression in all tissue samples from failed arthroplasties. Ti-alloy and PMMA particles increased expression of MCP-1 and MIP-1α in macrophages in vitro in a dose- and time-dependent manner whereas RANTES was not detected. mRNA signal levels for MCP-1 and MIP-1α were also observed in cells after exposure to particles. Monocyte migration was stimulated by culture medium collected from macrophages exposed to Ti-alloy and PMMA particles. Antibodies to MCP-1 and MIP-1α inhibited chemotactic activity of the culture medium samples. Release of C-C chemokines by macrophages in response to wear particles may contribute to chronic inflammation at the bone-implant interface in total joint arthroplasty


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1182 - 1190
1 Nov 2001
Minovic A Milosev I Pisot V Cör A Antolic V

We analysed revised Mathys isoelastic polyacetal femoral stems with stainless-steel heads and polyethylene acetabular cups from eight patients in order to differentiate various types of particle of wear debris. Loosening of isoelastic femoral stems is associated with the formation of polyacetal wear particles as well as those of polyethylene and metal. All three types of particle were isolated simultaneously by tissue digestion followed by sucrose gradient centrifugation. Polyacetal particles were either elongated, ranging from 10 to 150 μm in size, or shred-like and up to 100 μm in size. Polyethylene particles were elongated or granules, and were typically submicron or micronsized. Polyacetal and polyethylene polymer particles were differentiated by the presence of BaSO. 4. , which is added as a radiopaque agent to polyacetal but not to polyethylene. This was easily detectable by back-scattered SEM analysis and verified by energy dispersive x-ray analysis. Two types of foreign-body giant cell (FBGC) were recognised in the histological specimens. Extremely large FBGCs with irregular polygonal particles showing an uneven, spotty birefringence in polarised light were ascribed to polyacetal debris. Smaller FBGCs with slender elongated particles shining uniformly brightly in polarisation were related to polyethylene. Mononucleated histiocytes containing both types of particle were also present. Our findings offer a better understanding of the processes involved in the loosening of polyacetal stems and indicate why the idea of ‘isoelasticity’ proved to be unsuccessful in clinical practice


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 467 - 474
1 May 1997
Hukkanen M Corbett SA Batten J Konttinen YT McCarthy ID Maclouf J Santavirta S Hughes SPF Polak JM

Aseptic loosening is a major cause of failure of total hip arthroplasty. The adverse tissue response to prosthetic wear particles, with activation of cytokine and prostanoid production, contributes to bone loss around the implants. We have investigated the possibility that inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) are expressed in macrophages in the pseudomembrane at the bone-implant interface, thereby contributing to the periprosthetic bone resorption. We also assessed whether peroxynitrite, a nitric oxide (NO)-derived oxidant associated with cellular injury, is generated in the membrane. Enzymatic activity of iNOS was measured using the arginine-citrulline assay technique and prostaglandin E. 2. (PGE. 2. ), as an indicator of COX-2 activity, was measured using an enzyme immunoassay. Cellular immunoreactivity for iNOS, nitrotyrosine (a marker of peroxynitrite-induced cellular injury) and COX-2 was assessed by quantitative peroxidase immunocytochemistry while immunofluorescence methods were used for subsequent co-localisation studies with CD68. +. macrophages. The presence of calcium-independent iNOS activity and PGE. 2. production was confirmed in the homogenized interface membrane. Immunocytochemistry showed that periprosthetic CD68. +. wear-debris-laden macrophages were the most prominent cell type immunoreactive for iNOS, nitrotyrosine and COX-2. Other periprosthetic inflammatory and resident cell types were also found to immunolocalise nitrotyrosine thereby suggesting peroxynitrite-induced protein nitrosylation and cellular damage not only in NO-producing CD68. +. macrophages, but also in their neighbouring cells. These data indicate that both iNOS and COX-2 are expressed by CD68. +. macrophages in the interface membrane and peroxynitrite-induced cellular damage is evident in such tissue. If high-output NO and peroxynitrite generation were to cause macrophage cell death, this would result in the release of phagocytosed wear debris into the extracellular matrix. A detrimental cycle of events would then be established with further phagocytosis by newly-recruited inflammatory cells and subsequent NO, peroxynitrite and prostanoid synthesis. Since both NO and have been implicated in the induction and PGE. 2. maintenance of chronic inflammation with resulting loss of bone, and peroxynitrite in the pathogenesis of disease states, they may be central to the pathogenesis of aseptic loosening


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives

Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear.

Methods

To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1106 - 1113
1 Aug 2008
Richards L Brown C Stone MH Fisher J Ingham E Tipper JL

Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated in vivo. A randomised method of analysis was used to quantify and characterise all the polyethylene particles isolated.

We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives

The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms.

Methods

Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 835 - 842
1 Jun 2009
Hart AJ Skinner JA Winship P Faria N Kulinskaya E Webster D Muirhead-Allwood S Aldam CH Anwar H Powell JJ

We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene hip replacements. Our aim was to evaluate the relationship between metal-on-metal replacements, the levels of cobalt and chromium ions in whole blood and the absolute numbers of circulating lymphocytes. We recruited 164 patients (101 men and 63 women) with hip replacements, 106 with metal-on-metal hips and 58 with non-metal-on-metal hips, aged < 65 years, with a pre-operative diagnosis of osteoarthritis and no pre-existing immunological disorders.

Laboratory-defined T-cell lymphopenia was present in13 patients (15%) (CD8+ lymphopenia) and 11 patients (13%) (CD3+ lymphopenia) with unilateral metal-on-metal hips. There were significant differences in the absolute CD8+ lymphocyte subset counts for the metal-on-metal groups compared with each control group (p-values ranging between 0.024 and 0.046). Statistical modelling with analysis of covariance using age, gender, type of hip replacement, smoking and circulating metal ion levels, showed that circulating levels of metal ions, especially cobalt, explained the variation in absolute lymphocyte counts for almost all lymphocyte subsets.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 977 - 982
1 Jul 2009
Terrier A Merlini F Pioletti DP Farron A

Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from in vivo recorded data.

After one year of use, the volumetric wear was 8.4 mm3 for the anatomical prosthesis, but 44.6 mm3 for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1298 - 1302
1 Sep 2005
Iesaka K Jaffe WL Jones CM Kummer FJ

We have investigated the role of the penetration of saline on the shear strength of the cement-stem interface for stems inserted at room temperature and those preheated to 37°C using a variety of commercial bone cements. Immersion in saline for two weeks at 37°C reduced interfacial strength by 56% to 88% after insertion at room temperature and by 28% to 49% after preheating of the stem. The reduction in porosity as a result of preheating ranged from 71% to 100%. Increased porosity correlated with a reduction in shear strength after immersion in saline (r = 0.839, p < 0.01) indicating that interfacial porosity may act as a fluid conduit.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 717 - 725
1 May 2010
Kamali A Hussain A Li C Pamu J Daniel J Ziaee H Daniel J McMinn DJW

Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles.

There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants.

Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.