Surgical treatment of young femoral neck fractures often requires an open approach to achieve an anatomical reduction. The application of a calcar plate has recently been described to aid in femoral neck fracture reduction and to augment fixation. However, application of a plate may potentially compromise the regional vascularity of the femoral head and neck. The purpose of this study was to investigate the effect of calcar femoral neck plating on the vascularity of the femoral head and neck. A Hueter approach and capsulotomy were performed bilaterally in six cadaveric hips. In the experimental group, a one-third tubular plate was secured to the inferomedial femoral neck at 6:00 on the clockface. The contralateral hip served as a control with surgical approach and capsulotomy without fixation. Pre- and post-contrast MRI was then performed to quantify signal intensity in the femoral head and neck. Qualitative assessment of the terminal arterial branches to the femoral head, specifically the inferior retinacular artery (IRA), was also performed.Aims
Methods
In this paper we propose a new classification
of neurogenic peri-articular heterotopic ossification (HO) of the
hip based on three-dimensional (3D) CT, with the aim of improving
pre-operative planning for its excision. A total of 55 patients (73 hips) with clinically significant
HO after either traumatic brain or spinal cord injury were assessed
by 3D-CT scanning, and the results compared with the intra-operative
findings. At operation, the gross pathological anatomy of the HO as identified
by 3D-CT imaging was confirmed as affecting the peri-articular hip
muscles to a greater or lesser extent. We identified seven patterns
of involvement: four basic (anterior, medial, posterior and lateral)
and three mixed (anteromedial, posterolateral and circumferential).
Excellent intra- and inter-observer agreement, with kappa values
>
0.8, confirmed the reproducibility of the classification system. We describe the different surgical approaches used to excise
the HO which were guided by the 3D-CT findings. Resection was always
successful. 3D-CT imaging, complemented in some cases by angiography, allows
the surgeon to define the 3D anatomy of the HO accurately and to
plan its surgical excision with precision. Cite this article: