Objectives. The primary stability of the cementless Oxford Unicompartmental Knee Replacement (OUKR) relies on interference fit (or press fit). Insufficient interference may cause implant loosening, whilst excessive interference could cause bone damage and fracture. The aim of this study was to identify the optimal interference fit by measuring the force required to seat the tibial component of the cementless OUKR (push-in force) and the force required to remove the component (pull-out force). Materials and Methods. Six cementless OUKR tibial components were implanted in 12 new slots prepared on blocks of solid polyurethane foam (20 pounds per cubic foot (PCF), Sawbones, Malmo, Sweden) with a range of interference of 0.1 mm to 1.9 mm using a Dartec materials testing machine HC10 (Zwick Ltd, Herefordshire, United Kingdom) . The experiment was repeated with cellular polyurethane foam (15 PCF), which is a more porous analogue for trabecular bone. Results. The push-in force progressively increased with increasing interference. The
The aim of this study was to compare the peak pull-out force
(PPF) of pedicle-lengthening screws (PLS) and traditional pedicle
screws (TPS) using instant and cyclic fatigue testing. A total of 60 lumbar vertebrae were divided into six groups:
PLS submitted to instant pull-out and fatigue-resistance testing
(groups A1 and A2, respectively), TPS submitted to instant pull-out
and fatigue-resistance testing (groups B1 and B2, respectively)
and PLS augmented with 2 ml polymethylmethacrylate, submitted to
instant pull-out and fatigue-resistance testing (groups C1 and C2,
respectively). The PPF and normalized PPF (PPFn) for bone mineral density
(BMD) were compared within and between all groups.Aims
Materials and Methods
Aims. One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum
We have examined the deterioration of implant fixation after withdrawal of parathyroid hormone (PTH) in rats. First, the
Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw
We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm. 3. ) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest
Objective. This study compared the primary stability of two commercially
available acetabular components from the same manufacturer, which
differ only in geometry; a hemispherical and a peripherally enhanced
design (peripheral self-locking (PSL)). The objective was to determine
whether altered geometry resulted in better primary stability. Methods. Acetabular components were seated with 0.8 mm to 2 mm interference
fits in reamed polyethylene bone substrate of two different densities
(0.22 g/cm. 3. and 0.45 g/cm. 3. ). The primary stability
of each component design was investigated by measuring the peak
failure load during uniaxial pull-out and tangential lever-out tests. Results. There was no statistically significant difference in seating
force (p = 0.104) or primary stability (pull-out p = 0.171, lever-out
p = 0.087) of the two components in the low-density substrate. Similarly,
in the high-density substrate, there was no statistically significant
difference in the peak
We investigated several factors which affect the stability of cortical screws in osteoporotic bone using 18 femora from cadavers of women aged between 45 and 96 years (mean 76). We performed bone densitometry to measure the bone mineral density of the cortical and cancellous bone of the shaft and head of the femur, respectively. The thickness and overall bone mass of the cortical layer of the shaft of the femur were measured using a microCT scanner. The force required to pull-out a 3.5 mm titanium cortical bone screw was determined after standardised insertion into specimens of the cortex of the femoral shaft. A significant correlation was found between the pull-out strength and the overall bone mass of the cortical layer (r. 2. = 0.867, p <
0.01) and also between its thickness (r. 2. = 0.826, p <
0.01) and bone mineral density (r. 2. = 0.861, p <
0.01). There was no statistically significant correlation between the age of the donor and the
Fixation of the glenoid component is critical to the outcome of total shoulder arthroplasty. In an in vitro study, we analysed the effect of surface design and thickness of the cement mantle on the pull-out strength of the polyethylene pegs which are considered essential for fixation of cemented glenoid components. The macrostructure and surface of the pegs and the thickness of the cement mantle were studied in human glenoid bone. The lowest pull-out forces, 20 ± 5 N, were for cylindrical pegs with a smooth surface fixed in the glenoid with a thin cement mantle. The highest values, 425 ± 7 N, were for threaded pegs fixed with a thicker cement mantle. Increasing the diameter of the hole into which the peg is inserted from 5.2 to 6.2 mm thereby increasing the thickness of the cement mantle, improved the mean
Aseptic loosening is the most common cause of failure following cemented total knee arthroplasty (TKA), and has been linked to poor cementation technique. We aimed to develop a consensus on the optimal technique for component cementation in TKA. A UK-based, three-round, online modified Delphi Expert Consensus Study was completed focusing on cementation technique in TKA. Experts were identified as having a minimum of five years’ consultant experience in the NHS and fulfilling any one of the following criteria: a ‘high volume’ knee arthroplasty practice (> 150 TKAs per annum) as identified from the National joint Registry of England, Wales, Northern Ireland and the Isle of Man; a senior author of at least five peer reviewed articles related to TKA in the previous five years; a surgeon who is named trainer for a post-certificate of comletion of training fellowship in TKA.Aims
Methods
Temporary epiphysiodesis (ED) is commonly applied in children and adolescents to treat leg length discrepancies (LLDs) and tall stature. Traditional Blount staples or modern two-hole plates are used in clinical practice. However, they require accurate planning, precise surgical techniques, and attentive follow-up to achieve the desired outcome without complications. This study reports the results of ED using a novel rigid staple (RigidTack) incorporating safety, as well as technical and procedural success according to the idea, development, evaluation, assessment, long-term (IDEAL) study framework. A cohort of 56 patients, including 45 unilateral EDs for LLD and 11 bilateral EDs for tall stature, were prospectively analyzed. ED was performed with 222 rigid staples with a mean follow-up of 24.4 months (8 to 49). Patients with a predicted LLD of ≥ 2 cm at skeletal maturity were included. Mean age at surgery was 12.1 years (8 to 14). Correction and complication rates including implant-associated problems, and secondary deformities as well as perioperative parameters, were recorded (IDEAL stage 2a). These results were compared to historical cohorts treated for correction of LLD with two-hole plates or Blount staples.Aims
Methods
Healing in cancellous metaphyseal bone might be different from
midshaft fracture healing due to different access to mesenchymal
stem cells, and because metaphyseal bone often heals without a cartilaginous
phase. Inflammation plays an important role in the healing of a
shaft fracture, but if metaphyseal injury is different, it is important
to clarify if the role of inflammation is also different. The biology
of fracture healing is also influenced by the degree of mechanical
stability. It is unclear if inflammation interacts with stability-related
factors. We investigated the role of inflammation in three different models:
a metaphyseal screw pull-out, a shaft fracture with unstable nailing
(IM-nail) and a stable external fixation (ExFix) model. For each,
half of the animals received dexamethasone to reduce inflammation,
and half received control injections. Mechanical and morphometric evaluation
was used.Objectives
Methods
We investigated the long-term performance of the Tripolar Trident acetabular component used for recurrent dislocation in revision total hip arthroplasty. We assessed: 1) rate of re-dislocation; 2) incidence of complications requiring re-operation; and 3) Western Ontario and McMaster Universities osteoarthritis index (WOMAC) pain and functional scores. We retrospectively identified 111 patients who had 113 revision tripolar constrained liners between 1994 and 2008. All patients had undergone revision hip arthroplasty before the constrained liner was used: 13 after the first revision, 17 after the second, 38 after the third, and 45 after more than three revisions. A total of 75 hips (73 patients) were treated with Tripolar liners due to recurrent instability with abductor deficiency, In addition, six patients had associated cerebral palsy, four had poliomyelitis, two had multiple sclerosis, two had spina bifida, two had spondyloepiphyseal dysplasia, one had previous reversal of an arthrodesis, and 21 had proximal femoral replacements. The mean age of patients at time of Tripolar insertions was 72 years (53 to 89); there were 69 female patients (two bilateral) and 42 male patients. All patients were followed up for a mean of 15 years (10 to 24). Overall, 55 patients (57 hips) died between April 2011 and February 2018, at a mean of 167 months (122 to 217) following their tripolar liner implantation. We extracted demographics, implant data, rate of dislocations, and incidence of other complications.Aims
Patients and Methods
The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.Objectives
Methods
Damage to the cartilage of the distal radioulnar
joint frequently leads to pain and limitation of movement, therefore repair
of this joint cartilage would be highly desirable. The purpose of
this study was to investigate the fixation of scaffold in cartilage
defects of this joint as part of matrix-assisted regenerative autologous
cartilage techniques. Two techniques of fixation of collagen scaffolds,
one involving fibrin glue alone and one with fibrin glue and sutures, were
compared in artificially created cartilage defects of the distal
radioulnar joint in a human cadaver. After being subjected to continuous
passive rotation, the methods of fixation were evaluated for cover
of the defect and pull out force. No statistically significant differences were found between the
two techniques for either cover of the defect or integrity of the
scaffold. However, a significantly increased mean pull out force
was found for the combined procedure, 0.665 N (0.150 to 1.160) This suggests that although successful fixation of a collagen
type I/III scaffold in a distal radioulnar joint cartilage defect
is feasible with both forms of fixation, fixation with glue and
sutures is preferable. Cite this article:
During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly
Conventional non-steroidal anti-inflammatory drugs (NSAIDs) and newer specific cyclo-oxygenase-2 (cox-2) inhibitors are commonly used in musculoskeletal trauma and orthopaedic surgery to reduce the inflammatory response and pain. These drugs have been reported to impair bone metabolism. In reconstruction of the anterior cruciate ligament the hamstring tendons are mainly used as the graft of choice, and a prerequisite for good results is healing of the tendons in the bone tunnel. Many of these patients are routinely given NSAIDs or cox-2 inhibitors, although no studies have elucidated the effects of these drugs on tendon healing in the bone tunnel. In our study 60 female Wistar rats were randomly allocated into three groups of 20. One received parecoxib, one indometacin and one acted as a control. In all the rats the tendo-Achillis was released proximally from the calf muscles. It was then pulled through a drill hole in the distal tibia and sutured anteriorly. The rats were given parecoxib, indometacin or saline intraperitoneally twice daily for seven days. After 14 days the tendon/bone-tunnel interface was subjected to mechanical testing. Significantly lower maximum pull-out strength (p <
0.001), energy absorption (p <
0.001) and stiffness (p = 0.035) were found in rats given parecoxib and indometacin compared with the control group, most pronounced with parecoxib.
The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength. Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws.
Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.